scholarly journals Evaluation of Ribavirin–Poloxamer Microparticles for Improved Intranasal Absorption

Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1126
Author(s):  
Dipy M. Vasa ◽  
Zainab Bakri ◽  
Maureen D. Donovan ◽  
Lauren A. O’Donnell ◽  
Peter L. D. Wildfong

Ribavirin is a water-soluble antiviral compound which, owing to its inability to cross the blood–brain barrier, has limited effectiveness in treating viruses affecting the central nervous system. Direct nose-to-brain delivery was investigated for ribavirin in combination with poloxamer 188, an excipient known to enhance the absorption of drug compounds administered intranasally. Composite solid microparticles suitable for intranasal insufflation were prepared by suspending fine crystals of ribavirin in a matrix of poloxamer 188, which were cryogenically milled and characterized to ensure that ribavirin remained stable throughout preparation. In vitro diffusion of ribavirin across a semi-permeable regenerated cellulose membrane showed comparable cumulative drug release after 180 min from both fine solid particles (<20 µm) and 1:1 ribavirin:poloxamer microparticles (d50 = 20 µm); however, the initial release from polymer microparticles was slower, owing to gel formation on the membrane surface. When solid ribavirin was directly deposited on excised olfactory mucosa, either as fine drug particles or 1:1 ribavirin:poloxamer microparticles, permeation was significantly increased from microparticles containing poloxamer 188, suggesting additional interactions between the polymer and olfactory mucosa. These data indicate that for highly water-soluble drugs such as ribavirin or drugs subject to efflux by the nasal mucosa, a formulation of poloxmer-containing microparticles can enhance permeability across the olfactory epithelium and may improve direct nose-to-brain transport.

2019 ◽  
Vol 53 (7) ◽  
pp. 3959-3968 ◽  
Author(s):  
Peter Zotter ◽  
Stéphane Richard ◽  
Marcel Egli ◽  
Barbara Rothen-Rutishauser ◽  
Thomas Nussbaumer

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Yuan Gao ◽  
Jieyu Zuo ◽  
Nadia Bou-Chacra ◽  
Terezinha de Jesus Andreoli Pinto ◽  
Sophie-Dorothee Clas ◽  
...  

The aim of this study was to assess thein vitrorelease kinetics of antituberculosis drug-loaded nanoparticles (NPs) using a “modified” cylindrical apparatus fitted with a regenerated cellulose membrane attached to a standard dissolution apparatus (modifiedcylinder method). The model drugs that were used were rifampicin (RIF) and moxifloxacin hydrochloride (MX). Gelatin and polybutyl cyanoacrylate (PBCA) NPs were evaluated as the nanocarriers, respectively. The dissolution and release kinetics of the drugs from loaded NPs were studied in different media using the modified cylinder method and dialysis bag technique was used as the control technique. The results showed that use of the modified cylinder method resulted in different release profiles associated with unique release mechanisms for the nanocarrier systems investigated. The modified cylinder method also permitted discrimination between forced and normalin vitrorelease of the model drugs from gelatin NPs in the presence or absence of enzymatic degradation. The use of dialysis bag technique resulted in an inability to differentiate between the mechanisms of drug release from the NPs in these cases. This approach offers an effective tool to investigatein vitrorelease of RIF and MX from NPs, which further indicate that this technique can be used for performance testing of nanosized carrier systems.


Author(s):  
Rupali Shid L. ◽  
Shashikant N. Dhole ◽  
Nilesh Kulkarni ◽  
Santosh L. Shid L.

Poor water solubility and slow dissolution rate are issues polydispersity index. The obtained results showed that for the majority of upcoming and existing biologically active  particlesize (nm) and rate of dissolution has been improved compounds. Simvastatin is poorly water-soluble drug and  when nanosuspension prepared with the higher its bioavailability is very low from its crystalline form. The  concentration of PVPK-30 with the higher concentration of purpose of the present investigation was to increase the  PVP K-30 and Poloxamer-188 and lower concentration of solubility and dissolution rate of simvastatin by the  SLS. The partical size and zeta potential of optimized preparation of nanosuspension by Emulsification Solvent  formulation was found to be 258.3 nm and 23.43. The rate Diffusion Method at laboratory scale. Prepared nanosus- of dissolution of the optimized nanosuspension was pension was evaluated for its particle size and in vitro  enhanced (90.02% in 60 min), relative to plain simvastatin dissolution study and characterized by zeta potential, (21% in 60 min), mainly due to the formation of nanosized differential scanning calorimetry (DSC) and X-Ray particles. These results indicate the suitability of 23 factorial diffractometry (XRD), motic digital microscopy, entrapment  design for preparation of simvastatin loaded efficiency, total drug content, saturated solubility study and nanosuspension significantly improved in vitro dissolution in vivo study. A 23 factorial design was employed to study  rate, and thus possibly enhance fast onset of therapeutic the effect of independent variables, amount of SLS (X1), drug effect. In vivo study shows increase in bioavailability in amount of PVPK-30 (X2) and Poloxamer-188 (X3) and  nanosuspension formulation than the plain simvastatin dependent variables are total drug content and drug. 


Author(s):  
Venkatarao Mannem ◽  
Vidyadhara Suryadevara ◽  
Sandeep Doppalapudi

Objective: The current research focuses on solubility enhancement of poorly water-soluble drug telmisartan, using novel superdisintegrants such as Entada scandens seed starch and Poloxamer-188. Starches yielded from plants are pharmaceutically useful as binders, diluents, disintegrants, and lubricants.Methods: Starches were extracted from E. scandens seed powder using alkali method (sodium hydroxide at 0.1%, 0.25%, and 0.5% concentrations) and water. These starches were subjected for the evaluation of various physicochemical properties and phytochemical tests.Results: The phytochemical tests revealed the presence of only starch in all the extracts. Of all the starches, the starch prepared from 0.5% sodium hydroxide (ESS4) showed best physicochemical properties. Solid dispersions were prepared using telmisartan, poloxamer-188, and starch (ESS4) in various concentrations using fusion technique. Various pre-formulation parameters were evaluated. From in vitro dissolution studies, it was observed that the solid dispersion formulation TP7 containing telmisartan and poloxamer-188 in 1:4 ratios showed better dissolution rate. Solid dispersion TPS7 containing TP7 formulation and 15% w/w of alkali extracted starch showed faster disintegration and enhanced dissolution rate than the solid dispersions prepared alone with poloxamer-188. Fourier transform infrared spectroscopy and differential scanning calorimetric studies for optimized formulations revealed that there were no major interactions between the drug and excipients. X-ray diffraction studies revealed the crystalline and amorphous nature of formulations.Conclusion: Thus, the solid dispersions prepared using E. scandens seed starch revealed the superdisintegrant property of starch. 


Author(s):  
Mashkura Ashrafi ◽  
Jakir Ahmed Chowdhury ◽  
Md Selim Reza

Capsules of different formulations were prepared by using a hydrophilic polymer, xanthan gum and a filler Ludipress. Metformin hydrochloride, which is an anti-diabetic agent, was used as a model drug here with the aim to formulate sustained release capsules. In the first 6 formulations, metformin hydrochloride and xanthan gum were used in different ratio. Later, Ludipress was added to the formulations in a percentage of 8% to 41%. The total procedure was carried out by physical mixing of the ingredients and filling in capsule shells of size ‘1’. As metformin hydrochloride is a highly water soluble drug, the dissolution test was done in 250 ml distilled water in a thermal shaker (Memmert) with a shaking speed of 50 rpm at 370C &plusmn 0.50C for 6 hours. After the dissolution, the data were treated with different kinetic models. The results found from the graphs and data show that the formulations follow the Higuchian release pattern as they showed correlation coefficients greater than 0.99 and the sustaining effect of the formulations was very high when the xanthan gum was used in a very high ratio with the drug. It was also investigated that the Ludipress extended the sustaining effect of the formulation to some extent. But after a certain period, Ludipress did not show any significant effect as the pores made by the xanthan gum network were already blocked. It is found here that when the metformin hydrochloride and the xanthan gum ratio was 1:1, showed a high percentage of drug release, i.e. 91.80% of drug was released after 6 hours. But With a xanthan gum and metformin hydrochloride ratio of 6:1, a very slow release of the drug was obtained. Only 66.68% of the drug was released after 6 hours. The percent loading in this case was 14%. Again, when Ludipress was used in high ratio, it was found to retard the release rate more prominently. Key words: Metformin Hydrochloride, Xanthan Gum, Controlled release capsule Dhaka Univ. J. Pharm. Sci. Vol.4(1) 2005 The full text is of this article is available at the Dhaka Univ. J. Pharm. Sci. website


Author(s):  
Lê Thanh Long ◽  
Nguyễn Văn Toản ◽  
Nguyễn Văn Huế ◽  
Trang Sĩ Trung ◽  
Vũ Ngọc Bội

Chủng D1 phân lập từ các mẫu chuối có vết bệnh thán thư điển hình được sử dụng để nghiên cứu khả năng kháng nấm của chitosan hoà tan trong nước (Water-soluble chitosan_WSC) ở điều kiện in vitro. Kết quả phân tích trình tự gen mã hoá 28S rRNA của chủng D1 cho thấy tương đồng trình tự cao với các trình tự tương ứng của loài Colletotrichum musae và được ký hiệu là Colletotrichum musae D1. Kết quả các thí nghiệm đều cho thấy C. musae D1 rất nhạy cảm với WSC, hiệu lực ức chế tăng khi tăng nồng độ WSC xử lý ở điều kiện in vitro. Trên môi trường PDA, nồng độ 1,6% WSC ức chế hoàn toàn sự sinh trưởng của sợi nấm C. musae D1, nồng độ ức chế 50% (PIRG50) và nồng độ ức chế tối thiểu 90% (MIC90) tương ứng với nồng độ WSC 0,28% và 0,88%. Trong môi trường PDB, giá trị IC50 và MIC90 tương ứng là 0,11% và 0,43% và sự phát triển của sợi nấm C. musae D1 bị ức chế hoàn toàn ở nồng độ 0,8%. WSC không chỉ ức chế sự nảy mầm mà còn gây biến đổi bất thường bào tử nấm khi quan sát trên kính hiển vi.


Author(s):  
Venu Madhav K ◽  
Somnath De ◽  
Chandra Shekar Bonagiri ◽  
Sridhar Babu Gummadi

Fenofibrate (FN) is used in the treatment of hypercholesterolemia. It shows poor dissolution and poor oral bioavailability after oral administration due to high liphophilicity and low aqueous solubility. Hence, solid dispersions (SDs) of FN (FN-SDs) were develop that might enhance the dissolution and subsequently oral bioavailability. FN-SDs were prepared by solvent casting method using different carriers (PEG 4000, PEG 6000, β cyclodextrin and HP β cyclodextrin) in different proportions (0.25%, 0.5%, 0.75% and 1% w/v). FN-SDs were evaluated solubility, assay and in vitro release studies for the optimization of SD formulation. Differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM) analysis was performed for crystalline and morphology analysis, respectively. Further, optimized FN-SD formulation evaluated for pharmacokinetic performance in Wistar rats, in vivo in comparison with FN suspension.  From the results, FN-SD3 and FN-SD6 have showed 102.9 ±1.3% and 105.5±3.1% drug release, respectively in 2 h. DSC and PXRD studies revealed that conversion of crystalline to amorphous nature of FN from FT-SD formulation. SEM studies revealed the change in the orientation of FN when incorporated in SDs. The oral bioavailability FN-SD3 and FN-SD6 formulations exhibited 2.5-folds and 3.1-folds improvement when compared to FN suspension as control. Overall, SD of FN could be considered as an alternative dosage form for the enhancement of oral delivery of poorly water-soluble FN.


Author(s):  
Prakash Goudanavar ◽  
Ankit Acharya ◽  
Vinay C.H

Administration of an antiviral drug, acyclovir via the oral route leads to low and variable bioavailability (15-30%). Therefore, this research work was aimed to enhance bioavailability of acyclovir by nanocrystallization technique. The drug nanocrystals were prepared by anti-solvent precipitation method in which different stabilizers were used. The formed nanocrystals are subjected to biopharmaceutical characterization including solubility, particle size and in-vitro release. SEM studies showed nano-crystals were crystalline nature with sharp peaks. The formulated drug nanocrystals were found to be in the range of 600-900nm and formulations NC7 and NC8 showed marked improvement in dissolution velocity when compared to pure drug, thus providing greater bioavailability. FT-IR and DSC studies revealed the absence of any chemical interaction between drug and polymers used. 


Author(s):  
Sudarshan Singh ◽  
S S Shyale ◽  
P Karade

The aim of this study was to design orally disintegrating tablet (ODT) of Lamotrigine. It is an Antiepileptic drug which is widely used in epilepsy. It is also used in simple and complex partial seizures and secondary generalized tonic-clonic seizures. It is poorly water soluble drug (0.46 mg/ml). Thus, an attempt was made to enhance the water solubility by complexation with β-cyclodextrin (1:1 molar ratios). The orally disintegrating tablet of lamotrigine was prepared by direct compression method using different concentration of superdisintegrants such as Sodium starch glycollate, croscarmellose sodium by sublimating agent such as camphor. The formulations were evaluated for weight variation, hardness, friability, drug content, wetting time, in vitro disintegration time and in vitro dissolution studies. The prepared tablets were characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. The disintegration time for the complexed tablets prepared by different concentration of superdisintegrants was found to be in range of 32.54 ± 0.50 to 55.12 ± 0.57 sec and wetting time of the formulations was found to be in range of 28.47 ± 0.67 to 52.19 ± 0.72 sec. All the formulation showed almost 100 percent of drug release within 15 min. Among all the formulation F6 and F7 prepared with 18% croscarmellose sodium and camphor shows faster drug release, respectively 10 min, F6 gives good result for disintegration time, drug release, wetting time and friability. Further formulations were subjected to stability testing for 30 days at temperature of 40 ± 5 ºC/75 ± 5 %RH. Tablets showed no appreciable changes with respect to physical appearance, drug content, disintegration time and dissolution profiles. Results were statistically analyzed by one-way ANOVA at a p < 0.05. It was found that, the data at any point of time are significant at p < 0.05.


Sign in / Sign up

Export Citation Format

Share Document