scholarly journals Improved Bioavailability of Ebastine through Development of Transfersomal Oral Films

Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1315
Author(s):  
Nayyer Islam ◽  
Muhammad Irfan ◽  
Ameer Fawad Zahoor ◽  
Muhammad Shahid Iqbal ◽  
Haroon Khalid Syed ◽  
...  

The main objective of this research work was the development and evaluation of transfersomes integrated oral films for the bioavailability enhancement of Ebastine (EBT) to treat allergic rhinitis. The flexible transfersomes, consisting of drug (EBT), lipid (Phosphatidylcholine) and edge activator (EA) Polyoxyethylene sorbitan monooleate or Sorbitan monolaurate, were prepared with the conventional thin film hydration method. The developed transfersomes were further integrated into oral films using the solvent casting method. Transfersomes were evaluated for their size distribution, surface charge, entrapment efficiency (EE%) and relative deformability, whereas the formulated oral films were characterized for weight, thickness, pH, folding endurance, tensile strength, % of elongation, degree of crystallinity, water content, content uniformity, in vitro drug release and ex vivo permeation, as well as in vivo pharmacokinetic and pharmacodynamics profile. The mean hydrodynamic diameter of transfersomes was detected to be 75.87 ± 0.55 nm with an average PDI and zeta potential of 0.089 ± 0.01 and 33.5 ± 0.39 mV, respectively. The highest deformability of transfersomes of 18.52 mg/s was observed in the VS-3 formulation. The average entrapment efficiency of the transfersomes was about 95.15 ± 1.4%. Transfersomal oral films were found smooth with an average weight, thickness and tensile strength of 174.72 ± 2.3 mg, 0.313 ± 0.03 mm and 36.4 ± 1.1 MPa, respectively. The folding endurance, pH and elongation were found 132 ± 1, 6.8 ± 0.2 and 10.03 ± 0.4%, respectively. The ex vivo permeability of EBT from formulation ETF-5 was found to be approximately 2.86 folds higher than the pure drug and 1.81 folds higher than plain film (i.e., without loaded transfersomes). The relative oral bioavailability of ETF-5 was 2.95- and 1.7-fold higher than that of EBT-suspension and plain film, respectively. In addition, ETF-5 suppressed the wheal and flare completely within 24 h. Based on the physicochemical considerations, as well as in vitro and in vivo characterizations, it is concluded that the highly flexible transfersomal oral films (TOFs) effectively improved the bioavailability and antihistamine activity of EBT.

Pharmaceutics ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 465 ◽  
Author(s):  
Eman A. Mazyed ◽  
Abdelaziz E. Abdelaziz

Acetazolamide (ACZ) is a potent carbonic anhydrase inhibitor that is used for the treatment of glaucoma. Its oral administration causes various undesirable side effects. This study aimed to formulate transgelosomes (TGS) for enhancing the ocular delivery of ACZ. ACZ-loaded transfersomes were formulated by the ethanol injection method, using phosphatidylcholine (PC) and different edge activators, including Tween 80, Span 60, and Cremophor RH 40. The effects of the ratio of lipid to surfactant and type of surfactant on % drug released after 8 h (Q8h) and entrapment efficiency (EE%) were investigated by using Design-Expert software. The optimized formula was formulated as TGS, using poloxamers as gelling agents. In vitro and in vivo characterization of ACZ-loaded TGS was performed. According to optimization study, F8 had the highest desirability value and was chosen as the optimized formula for preparing TGS. F8 appeared as spherical elastic nanovesicles with Q8h of 93.01 ± 3.76% and EE% of 84.44 ± 2.82. Compared to a free drug, TGS exhibited more prolonged drug release of 71.28 ± 0.46% after 8 h, higher ex vivo permeation of 66.82 ± 1.11% after 8 h and a significant lowering of intraocular pressure (IOP) for 24 h. Therefore, TGS provided a promising technique for improving the corneal delivery of ACZ.


2021 ◽  
Vol 62 (3) ◽  
pp. 290-304
Author(s):  
Moreshwar Patil ◽  
Prashant Pandit ◽  
Pavan Udavant ◽  
Sandeep Sonawane ◽  
Deepak Bhambere

Introduction: Etodolac is used in the treatment of acute pain and inflammation. It has low solubility because of high hydrophobicity and it is reported that upon oral administration shows gastric disturbances. This encourages the development of topical vesicular formulation. Method: In this work we used coacervation-phase separation method for the development of etodolac loaded vesicular system by using non-ionic surfactants, cholesterol and soya lecithin. Central composite design (rotatble) was used to optimize the concentrations of soy lecithin, surfactant and cholesterol. The prepared formulations were characterized by number of vesicles formed, vesicle size, zeta potential, entrapment efficiency, in-vitro permeation, ex-vivo permeation and anti-inflammatory study. Results: Etodolac was successfully entrapped in all formulations having efficiency in the range of 74.36% to 90.85%, which was more at 4 °C than room temperature. When hydrated with water; niosome in the range of 54 to 141 (per cubic mm) were spontaneously produced. The results of in-vitro diffusion study revealed that etodolac was released in the range of 71.86 to 97.16% over a period of 24 hrs. The average vesicle size of optimized formulation was found 211.9 nm with PDI of 0.5. The observed responses i.e. % encapsulation efficiency and drug release were 74.12 and 95.08 respectively. The zeta potential was -19.4mV revealed the stability of formulation which was further confirmed by no changes in drug content and drug release after stability studies. The % inhibition in paw volume was 40.52% and 43.61% for test and marketed proniosomal gel. Conclusion: Proniosomal gel formulation was stable and could enhance skin delivery of etodolac because of excellent permeation capability of vesicular system.


2018 ◽  
Vol 10 (2) ◽  
pp. 76 ◽  
Author(s):  
Shereen Ahmed Sabry

Objective: The purpose of this study was to design and formulate mucoadhesive buccal patches of sodium cromoglycate (SCG) as an alternative way to overcome its poor oral absorption and short half-life.Methods: Mucoadhesive patches were prepared by solvent casting technique using cellulose acetate butyrate (CAB) alone or in combination with mucoadhesive polymers like SCMC (sodium carboxymethyl cellulose), HPMC 100M (hydroxyl propyl methyl cellulose) and Cbp934P (carbopol) in different concentrations. The successful patches were evaluated for thickness, weight variation, folding endurance, tensile strength, drug content, surface pH, moisture uptake, swelling percentage, mucoadhesion strength, residence time, in vitro release study, ex vivo permeation and in vivo pharmacokinetic studies.Results: The thickness of all prepared patches ranged from 0.210±0.006 to0.355±0.012, folding endurance was more than 300, weight variation did not exceed 0.179±0.015, tensile strength and % elongation ranged from 6.4±0.018 to 13.1±0.024, and from 30.4±0.88 to 53.4±0.78respectively. The swelling percentage after one hour was from 20.8±0.99 to 53.2±1.5. pH of all prepared patches did not exceed 6.8, the drug content was about 99 to 101%, moisture uptake did not exceed 10%. Mucoadhesion strength and residence time ranged from 17.2±0.14 to 51.2±0.26, and from 3.35±0.25 to 7.45±0.28 respectively. The cumulative release percentage of SCG was in the following descending order CAB>CAB with Cbp934P>CAB with HPMC>CAB with SCMC. The optimized patch (F9) decreased the Cmax and increased Tmax compared to the parenteral solution.Conclusion: It can be concluded that mucoadhesive buccal patch is a promising dosage form to prolong the release of SCG and enhance its poor oral bioavailability.


Author(s):  
S. M. Sindhoor ◽  
Marina Koland

Background: Apremilast (APR) is an orally administered selective phosphodiesterase 4 inhibitor approved to treat plaque psoriasis and psoriatic arthritis and is available as an oral tablet formulation. However, its systemic side effects limit its application. The low solubility and permeability of apremilast make it difficult to administer it through the skin. Hence an attempt is made to incorporate apremilast into a suitable nanocarrier to facilitate its topical delivery. Aims: To formulate and characterize Apremilast loaded nanostructured lipid carriers for the management of psoriasis to reduce the systemic side effects. Methodology: Apremilast loaded Nanostructured Lipid carriers (NLC) were prepared by melt emulsification accompanied by probe sonication. The formulation was prepared using GMS, Sefsol 218, Tween 80 and Transcutol P as Solid Lipid, Liquid lipid, Surfactant and Penetration Enhancer. The NLC was incorporated into carbapol 934 dispersion to convert it into a gel. The NLC formulation was evaluated for size, Polydispersity Index, Zeta Potential, Entrapment efficiency,  Transmission Electron Microscopy. After that, the NLC gel was examined for Spreadability, Extrudabilty, Viscosity, In vitro drug release, Ex vivo permeation, Skin deposition and In vivo studies. Results: The formulated Apremilast loaded showed particle size of less than 200 nm (i.e.170.32nm) with a narrow PDI of 0.267. Entrapment efficiency revealed that 89.26±01.22% of the drug was entrapped. Transmission electron microscopy images confirmed the spherical nature of the nanocarrier. The extended-release pattern of the formulated NLC for 24h was observed in the in vitro release studies and followed the Higuchi model(R2=0.9966). Ex vivo permeability showed a 6.14 fold increase in permeability and 74.05±0.25% deposition of apremilast loaded NLC gel compared to apremilast gel. The formulation was stable for three months without significant changes. In vivo skin studies showed that the prepared NLC did not have any skin irritation potential. The antipsoriatic activity demonstrated by the Apremilast loaded NLC gel in the imiquimod induced psoriasis model in mice was comparable to the standard treatment. Conclusion: Apremilast loaded NLC demonstrated enhanced permeation, improved skin retention and extended-release compared to conventional gel. The developed formulation can be an alternative for psoriasis therapy after clinical trials in the future.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
M. Yasmin Begum ◽  
Ali Alqahtani ◽  
Mohammed Ghazwani ◽  
M. M. Ramakrishna ◽  
Umme Hani ◽  
...  

The goal of present investigation was to formulate and evaluate ketorolac tromethamine (KTM) mucoadhesive buccal films. The films were prepared by solvent evaporation method using PVP K30, HPMC K4M, HPMC K15M, carbopol 934, chitosan, and sodium alginate as polymers and propylene glycol as plasticizer. The films were evaluated for thickness, weight variation, folding endurance, surface pH, swelling index, in vitro residence time, in vitro diffusion, release kinetics, ex vivo permeation, in vitro-ex vivo correlation, and in vivo pharmacological activities such as anti-inflammatory and analgesic activity. Thickness, weight, drug content, and folding endurance were found to be uniform for the films. Surface pH was 6.85 ± 0.10 , and swelling index was the highest ( 27.27 ± 0.37 ) for the best film containing carbopol 934 along with sodium alginate and PVP K 30 (formulation code F2). In vitro residence time was greater than 5 h, and in vitro % drug release was 98.71% for F2. It exhibited 55.49% of swelling inhibition at 5 h, and above 38.88% was maintained at even 8 h. The film F2 has shown maximum analgesic response of 17 sec at 5 h, and the response of 11 sec was maintained at even 8 h. The anti-inflammatory and analgesic effect of F2 was found be maximum while sustaining the effect for prolonged period when compared to free drug solution. Thus, KTM mucoadhesive buccal film containing carbopol 934, sodium alginate, and PVP K30 could be an effective alternative for conventional therapy with improved efficacy.


2020 ◽  
Vol 13 ◽  
Author(s):  
Harpal Kaur ◽  
Neeraj Mishra ◽  
Bharat Khurana ◽  
Sukhbir Kaur ◽  
Daisy Arora

Background: The existing parenteral treatment of cervical cancer has high toxicity and poor distribution of drugs at the targeted site. Purpose: To formulate localized mucoadhesive cisplatin loaded microparticles based formulation to treat cervical cancer so that enhanced therapeutics benefits with low toxicity could be achieved. Methods: Cisplatin loaded chitosan coated spray-dried microparticles were prepared by ionotropic gelation technique and optimized by Central Composite Design. The spray-dried uncoated and chitosan-coated microparticles were characterized for various parameters (Particle size, Morphology, Drug entrapment efficiency). In vitro drug release study was carried out in simulated vaginal fluids by dialysis membrane method. Ex vivo studies were carried out to evaluate the cytotoxic potential of the developed formulation by MTT assay. A drug permeability study was done by Franz diffusion cell using the vaginal tissue of Swiss Albino Mice. Results: All in vitro characterization parameters were found to be optimum. The In vitro release studies indicated a controlled release following the Higuchi model. The chitosan-coated microparticles were found to be more cytotoxic than uncoated microparticles and plain cisplatin solution. The chitosan-coated microparticles were found to be more permeable than uncoated microparticles. Finally, in vivo tumor regression and histopathological studies confirmed the significant decrease in tumor volume at different time intervals. Conclusion: Thus it can be concluded that mucoadhesive spray-dried microparticles could provide a favorable approach for localized delivery of the anticancer drug via vaginal route against cervical cancer with its enhanced effectiveness.


Author(s):  
Khanderao Jadhav ◽  
Shivraj Jadhav ◽  
Deepak Sonawane ◽  
Deepak Somvanshi ◽  
Hina Shah ◽  
...  

The objective of the current work is to formulate and evaluate the mouth dissolving film of domperidone. It is ideally suitable for the treatment of emesis. The mouth dissolving film of domperidone is useful in the vomiting through the journey. Mouth dissolving films were formulated by the solvent casting technique and its in-vitro as well as the in-vivo evaluation was done by the usual pharmacopoeial and unofficial tests and by using human volunteers. The main benefit of the preparation technique includes fewer operation units, better content consistency. The mouth dissolving film formed was found to be disintegrated in 1 minute. The ratio of components in the aqueous phase affected the thickness, drug content, tensile strength, percentage elongation, folding endurance, and release profile of mouth dissolving film and the best results were obtained for the HPMC E15 and polyethyleneglycol. The compatibility between domperidone and excipients was confirmed by FTIR and DSC studies. The developed mouth dissolving film of domperidone demonstrated usefulness for fast release of drug in mouth, for better drug utilization, and improved patient compliance. The optimized formulation, due to low HPMC E15 content, has optimum tensile strength and thickness. Formulation F8 containing HPMC E15 and PG showed a cumulative % drug release of 95.10 at the end of 12 minutes. HPMC E15 films showed higher cumulative % drug release than films of other HPMC E grades at different concentrations. It was found to be stable during the accelerated stability study. The effect of different concentrations of polymers and plasticizers on in-vitro evaluation parameters was evaluated. Hence, data showed that formulation F8 was the most suitable for the development of fast dissolving oral films of domperidone.


Author(s):  
Y. SARAH SUJITHA ◽  
Y. INDIRA MUZIB

Objective: Quercetin is therapeutically hampered because of its poor solubility. The present investigation was aimed to prepare quercetin loaded nanosponges topical gel to enhance the solubility and efficacy of the drug. Methods: Quercetin nanosponges were prepared by emulsion solvent diffusion method. Developed nanosponges optimized by particle size, SEM, entrapment efficiency, FT-IR, DSC, P-XRD, In vitro studies. The optimized formulation of nanosponges was loaded into a topical gel and it was characterized by ex-vivo, in vivo Pharmacodynamic and kinetic studies. Results: The particle size and zeta potential of optimized nanosponges were found to be 188.3 nm and-0.1mV. Surface morphology was studied using SEM Analysis which showed tiny sponge-like structure and entrapment efficiency was found to be 96.5 %. In vitro drug release of optimized nanosponges was found to be 98.6% for 7hours. Optimized nanosponges entrapped gel was prepared by using carbopol 934 and hydroxypropyl methylcellulose as gelling agents. The prepared nanogels were homogenous and ex-vivo skin permeation studies of the optimized nanosponges gel was found to be 98.1% for 5 h, quercetin loaded nanosponges has shown higher skin permeation efficiency (18.4µg/cm2±2.1) compared to pure quercetin gel. The pharmacokinetic and pharmacodynamic studies showed that the quercetin loaded nanosponges has shown more effective when compared to marketed formulation. Conclusion: Quercetin loaded nanosponges gel has shown a significant increase in activity (p<0.05) compared to the marketed formulation (Voveran Emulgel).


Author(s):  
Shubhangi Aher ◽  
Ravindra Pal Singh ◽  
Manish Kumar

The problem of bacterial conjunctivitis has dramatically increased in recent years due increased pollution and modern lifestyle. The present study was focused to fabricate Sparfloxacin loaded nanostructured lipid carriers (Spar-NLCs) for ophthalmic application to improve ocular penetration of drug and give sustained release of drug to reduce dosing frequency and toxic effect of drug associated with ocular membrane. A regular two-level factorial design was used to optimize the formulation parameters that are significantly affecting the formulation attributes. Spar-NLCs with particle size 171.1 ± 11 nm, zeta potential -49 ± 6.47 mV, entrapment efficiency 89.5 ± 5% and spherical in shape was obtained. Besides this, FTIR spectroscopy, differential scanning calorimetry, and transmission electron microscopy results suggest that the drug is successfully incorporated in NLC and has excellent compatibility with the excipients. In vitro release study follows Korsmeyer peppas model and suggests that 81.35 ± 6.2% release of drug from Spar-NLCs in 12 hours. The result of ex-vivo permeation study demonstrated 349.75 ± 7.3 µg/cm2 of permeation of drug, 44.482 µg cm-2 hr -1 of flux, and 0.1482 cm hr-1 of permeability coefficient which is 1.7 folds higher than pure drug suspension. The antimicrobial activity of Spar-NLCs was better than the pure drug suspension and equivalent to the marketed formulation. Spar-NLC formulation did not showed any ocular damage, swelling, and redness in in -vivo Draize test. The ocular tolerance test (HET-CAM test) also suggests that the Spar-NLC formulation and its excipients were nonirritant to the ocular tissues. The formulation was found to be stable over the three month of stability study. Therefore, this work strongly suggest that Spar-NLCs has higher penetration and extended release of drug which can be effectively used in prevention of bacterial conjunctivitis.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Ujwala A. Shinde ◽  
Shivkumar S. Kanojiya

The objective of present study was to develop nonionic surfactant vesicles of proteolytic enzyme serratiopeptidase (SRP) by adapting reverse phase evaporation (REV) technique and to evaluate the viability of SRP niosomal gel in treating the topical inflammation. The feasibility of SRP niosomes by REV method using Span 40 and cholesterol has been successfully demonstrated in this investigation. The entrapment efficiency was found to be influenced by the molar ratio of Span 40 : cholesterol and concentration of SRP in noisome. The developed niosomes were characterized for morphology, particle size, and in vitro release. Niosomal gel was prepared by dispersing xanthan gum into optimized batch of SRP niosomes. Ex vivo permeation and in vivo anti-inflammatory efficacy of gel formulation were evaluated topically. SRP niosomes obtained were round in nanosize range. At Span 40 : cholesterol molar ratio 1 : 1 entrapment efficiency was maximum, that is, 54.82% ± 2.08, and showed consistent release pattern. Furthermore ex vivo skin permeation revealed that there was fourfold increase in a steady state flux when SRP was formulated in niosomes and a significant increase in the permeation of SRP, from SRP niosomal gel containing permeation enhancer. In vivo efficacy studies indicated that SRP niosomal gel had a comparable topical anti-inflammatory activity to that of dicolfenac gel.


Sign in / Sign up

Export Citation Format

Share Document