scholarly journals Porous Nanomaterials Targeting Autophagy in Bone Regeneration

Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1572
Author(s):  
Qing Zhang ◽  
Lan Xiao ◽  
Yin Xiao

Porous nanomaterials (PNMs) are nanosized materials with specially designed porous structures that have been widely used in the bone tissue engineering field due to the fact of their excellent physical and chemical properties such as high porosity, high specific surface area, and ideal biodegradability. Currently, PNMs are mainly used in the following four aspects: (1) as an excellent cargo to deliver bone regenerative growth factors/drugs; (2) as a fluorescent material to trace cell differentiation and bone formation; (3) as a raw material to synthesize or modify tissue engineering scaffolds; (4) as a bio-active substance to regulate cell behavior. Recent advances in the interaction between nanomaterials and cells have revealed that autophagy, a cellular survival mechanism that regulates intracellular activity by degrading/recycling intracellular metabolites, providing energy/nutrients, clearing protein aggregates, destroying organelles, and destroying intracellular pathogens, is associated with the phagocytosis and clearance of nanomaterials as well as material-induced cell differentiation and stress. Autophagy regulates bone remodeling balance via directly participating in the differentiation of osteoclasts and osteoblasts. Moreover, autophagy can regulate bone regeneration by modulating immune cell response, thereby modulating the osteogenic microenvironment. Therefore, autophagy may serve as an effective target for nanomaterials to facilitate the bone regeneration process. Increasingly, studies have shown that PNMs can modulate autophagy to regulate bone regeneration in recent years. This paper summarizes the current advances on the main application of PNMs in bone regeneration, the critical role of autophagy in bone regeneration, and the mechanism of PNMs regulating bone regeneration by targeting autophagy.

Biomolecules ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 840 ◽  
Author(s):  
Markus Witzler ◽  
Dominik Büchner ◽  
Sarah Shoushrah ◽  
Patrick Babczyk ◽  
Juliana Baranova ◽  
...  

Bone tissue engineering is an ever-changing, rapidly evolving, and highly interdisciplinary field of study, where scientists try to mimic natural bone structure as closely as possible in order to facilitate bone healing. New insights from cell biology, specifically from mesenchymal stem cell differentiation and signaling, lead to new approaches in bone regeneration. Novel scaffold and drug release materials based on polysaccharides gain increasing attention due to their wide availability and good biocompatibility to be used as hydrogels and/or hybrid components for drug release and tissue engineering. This article reviews the current state of the art, recent developments, and future perspectives in polysaccharide-based systems used for bone regeneration.


2007 ◽  
Vol 7 (12) ◽  
pp. 4595-4603 ◽  
Author(s):  
R. Murugan ◽  
Z. M. Huang ◽  
F. Yang ◽  
S. Ramakrishna

Scaffold plays a critical role in tissue engineering where it provides necessary structural support for the cells to accommodate and to guide their growth in the three dimensional space into a specific tissue. Therefore, engineering scaffolds favorable for cell/tissue growth is of great importance and a pre-requisite for scaffold-based tissue engineering. Electrospinning is a versatile method that has been recently adapted in engineering nano-fibrous scaffolds that mimic the structural features of biological extracellular matrix (ECM). It offers many advantages over conventional scaffold methodologies, for example, capable of producing ultra-fine fibers with high porosity, high spatial orientation, high aspect ratio, and high surface area, which are highly required for the initial cell attachment, tissue formation, and continued function. Considering these astonishing merits, this article emphasis on nano-fibrous scaffold engineering by electrospinning.


RSC Advances ◽  
2022 ◽  
Vol 12 (3) ◽  
pp. 1433-1450
Author(s):  
Heja Ibrahim Adil ◽  
Mohammad R. Thalji ◽  
Suhad A. Yasin ◽  
Ibtisam A. Saeed ◽  
Mohammed A. Assiri ◽  
...  

Metal–organic frameworks (MOFs) are promising and effective materials for removing heavy metal ions from contaminated water owing to their high porosity, remarkable physical and chemical properties, and high specific surface area.


2018 ◽  
Author(s):  
Agueda Sonseca ◽  
Rahul Sahay ◽  
Karolina Stepien ◽  
Julia Bukała ◽  
Aleksandra Wcislek ◽  
...  

<div><div><div><p>Electrospinning is one of the most investigated methods used to produce polymeric fiber structures that mimic the morphology of native extracellular matrix. These structures have been extensively studied in the context of scaffolds for tissue regeneration. However, the compactness of materials obtained by traditional electrospinning, collected as two-dimensional non-woven scaffolds, can limit cell infiltration and tissue ingrowth. In addition, for applications in smooth muscle tissue engineering, highly elastic scaffolds capable of withstanding cyclic mechanical strains without suffering significant permanent deformations are preferred. In order to address these challenges, we report the fabrication of microscale 3D helically coiled structures (referred as 3D-HCS) by wet-electrospinning method, a modification of the traditional electrospinning process in which a coagulation bath (non-solvent system for the electrospun material) is used as the collector. The present study, for the first time, successfully demonstrates the feasibility of using this method to produce various architectures of 3D-HCS from segmented copolyester of poly(butylene succinate-co- dilinoleic succinate) (PBS-DLS), a thermoplastic elastomer. A mechanism for the HCS formation is proposed and verified with experimental data. Fabricated 3D-HCS showed high specific surface area, high porosity, and good elasticity. Further, the marked increase in cell proliferation on 3D-HCS confirmed the suitability of these materials as scaffolds for soft tissue engineering.</p></div></div></div>


2018 ◽  
Author(s):  
Agueda Sonseca ◽  
Rahul Sahay ◽  
Karolina Stepien ◽  
Julia Bukała ◽  
Aleksandra Wcislek ◽  
...  

<div><div><div><p>Electrospinning is one of the most investigated methods used to produce polymeric fiber structures that mimic the morphology of native extracellular matrix. These structures have been extensively studied in the context of scaffolds for tissue regeneration. However, the compactness of materials obtained by traditional electrospinning, collected as two-dimensional non-woven scaffolds, can limit cell infiltration and tissue ingrowth. In addition, for applications in smooth muscle tissue engineering, highly elastic scaffolds capable of withstanding cyclic mechanical strains without suffering significant permanent deformations are preferred. In order to address these challenges, we report the fabrication of microscale 3D helically coiled structures (referred as 3D-HCS) by wet-electrospinning method, a modification of the traditional electrospinning process in which a coagulation bath (non-solvent system for the electrospun material) is used as the collector. The present study, for the first time, successfully demonstrates the feasibility of using this method to produce various architectures of 3D helically coiled structures (HCS) from segmented copolyester of poly(butylene succinate-co-dilinoleic succinate) (PBS-DLS), a thermoplastic elastomer. A mechanism for the HCS formation is proposed and verified with experimental data. Fabricated 3D-HCS showed high specific surface area, high porosity, and good elasticity. Further, the marked increase in cell proliferation on 3D-HCS confirmed the suitability of these materials as scaffolds for soft tissue engineering.</p></div></div></div>


2020 ◽  
Vol 10 (7) ◽  
pp. 1102-1108
Author(s):  
Chunyan Dai ◽  
Qian Wang ◽  
Georgios Patias ◽  
Ataulla Shegiwal ◽  
Linhua Zhu ◽  
...  

Non-nano scaled hydroxyapatite (HAP) particles cannot enter the cells, but they are also wildly used in tissue engineering for their excellent bone regeneration. We synthesized a defect-related luminescent micro-scale hydroxyapatite particles (S3) and investigated the effect of S3 during bone regeneration. S3 promoted the formation of mineralized nodules and collagen synthesis of osteoblasts (OBs). Micro-scaled S3 couldn't enter into OBs and couldn't change the Ca2+ concentration of the medium. During the cell differentiation, the location of S3 was tracked by its defect-related luminescence in vitro. Extracellular S3 particles become the nucleation events which promote bone regeneration. The results suggest that micro-scale HAP promoted bone regeneration through extracellular pathways. This result also can explain the reason why hydroxyapatite covered tissue scaffold is more suitable for bone reconstructing.


2019 ◽  
Author(s):  
Agueda Sonseca ◽  
Rahul Sahay ◽  
Karolina Stepien ◽  
Julia Bukała ◽  
Aleksandra Wcislek ◽  
...  

<div><div><div><p>Electrospinning is one of the most investigated methods used to produce polymeric fiber structures that mimic the morphology of native extracellular matrix. These structures have been extensively studied in the context of scaffolds for tissue regeneration. However, the compactness of materials obtained by traditional electrospinning, collected as two-dimensional non-woven scaffolds, can limit cell infiltration and tissue ingrowth. In addition, for applications in smooth muscle tissue engineering, highly elastic scaffolds capable of withstanding cyclic mechanical strains without suffering significant permanent deformations are preferred. In order to address these challenges, we report the fabrication of microscale 3D helically coiled structures (referred as 3D-HCS) by wet-electrospinning method, a modification of the traditional electrospinning process in which a coagulation bath (non-solvent system for the electrospun material) is used as the collector. The present study, for the first time, successfully demonstrates the feasibility of using this method to produce various architectures of 3D-HCS from segmented copolyester of poly(butylene succinate-co- dilinoleic succinate) (PBS-DLS), a thermoplastic elastomer. A mechanism for the HCS formation is proposed and verified with experimental data. Fabricated 3D-HCS showed high specific surface area, high porosity, and good elasticity. Further, the marked increase in cell proliferation on 3D-HCS confirmed the suitability of these materials as scaffolds for soft tissue engineering.</p></div></div></div>


2018 ◽  
Vol 33 (7) ◽  
pp. 979-988 ◽  
Author(s):  
Toni Matson ◽  
Jonathan Gootee ◽  
Colten Snider ◽  
John Brockman ◽  
David Grant ◽  
...  

Soy lecithin has been shown to play a critical role in cell signaling and cellular membrane structure. In addition, it has been shown to increase biocompatibility, hydrophilicity, and decrease cytotoxicity. Gold nanoparticles have also shown to improve cellularity. Lecithin, gold nanoparticles, and polycaprolactone (PCL) solutions were electrospun in order to develop unique mesh materials for the treatment of osteoarthritis. The electrospinning parameters were optimized to achieve different solution ratios for fiber optimization. The amount of lecithin mixed with PCL varied from 30 wt.% to 50 wt.% . Gold nanoparticles (1% to 10% concentrations) were also added to lecithin-PCL mixture. The mechanical and chemical properties of the fiber mesh were analyzed via contact angle test, tensile mechanical tests, Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). Cell viability was measured using a WST-1 Assay. Scanning electron microscopy confirmed the successful formation of fiber mesh. The compositions of 40% soy lecithin with PCL in 40% solvent (40:40) resulted in the most well-formed fiber mesh. DSC melt temperatures were statically insignificant; uniaxial stresses and the moduli resulted in no significant difference between the test composition and pristine PCL compositions. WST-1 assay revealed all compositions were non-cytotoxic. Overall, the addition of lecithin increased hydrophilicity while maintaining cell viability and the mechanical and chemical properties of PCL. This study demonstrated that it is possible to successfully electrospin a lecithin, gold nanoparticle, and polycaprolactone scaffold for tissue engineering applications.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2896
Author(s):  
Gyo Eun Gu ◽  
Joonwon Bae ◽  
Ho Seok Park ◽  
Jin-Yong Hong

A polymer-based nanofiber membrane with a high specific surface area, high porosity and abundant adsorption sites is demonstrated for selective trapping of radionuclides. The Prussian blue (PB)/poly(methyl methacrylate) (PMMA) nanofiber composites were successfully prepared through a one-step, single-nozzle electrospinning method. Various analytical techniques were used to examine the physical and chemical properties of PB nanoparticles and electrospun nanofibers. It is possible to enhance binding affinity and selectivity to radionuclide targets by incorporation of the PB nanoparticles into the polymer matrix. It is noteworthy that the maximum 133Cs adsorption capacity of hte PB/PMMA nanofiber filter is approximately 28 times higher than that of bulk PB, and the removal efficiency is measured to be 95% at 1 ppm of 133Cs. In addition, adsorption kinetics shows that the PB/PMMA nanofiber has a homogenous surface for adsorption, and all sites on the surface have equal adsorption energies in terms of ion-exchange between cyano groups of the introduced PB nanoparticles and radionuclides.


2016 ◽  
Vol 49 (3) ◽  
pp. 153 ◽  
Author(s):  
Nadia Kartikasari ◽  
Anita Yuliati ◽  
Indah Liatiana Kriswandini

Background: Degenerative diseases, aggressive periodontitis, trauma, jaw resection, and congenital abnormalities can cause defects in jaw bone. The surgical procedure for bone reconstruction currently performed is bone regeneration graft (BRG). Unfortunately, this procedure still has many disadvantages. Thus, tissue engineering approach is necessary to be conducted. The main component used in this tissue engineering is scaffolds. Scaffolds used in bone regeneration is expected to have appropriate characteristics with bone, such as high porosity and swelling ratio, low degradation rates, and good mechanical properties. For those reasons, this research used scaffolds made from bovine hydroxyapatite (BHA), gelatin (GEL), and chitosan (K)/BHA-GEL-K as one of biomaterial candidates for bone regeneration. Purpose: This study aimed to determine compressive strength value and porosity size of BHA-GEL-K scaffolds. Method: Compressive strength of BHA-GEL-K scaffolds was tested using autograph with speed 10 mm/ min with a load cell compress machine of 100 kN. Compressive strength was calculated by force divided to surface area. Porosity test was measured using SEM. Scaffold were coated with Pb and Au, then the porosity size is calculated with SEM at 100x magnification. Result: BHA-GEL-K scaffolds had a mean compressive strength value of 174.29 kPa and a porosity size of 31.62 + 147.06 lm. Conclusion: It can be concluded that BHA-GEL-K scaffolds has a good compressive strength, but not yet resemble real bone mass, while porosity of BHA-GEL-K scaffold is appropriate for bone tissue regeneration application.


Sign in / Sign up

Export Citation Format

Share Document