Nanofibrous Scaffold Engineering Using Electrospinning

2007 ◽  
Vol 7 (12) ◽  
pp. 4595-4603 ◽  
Author(s):  
R. Murugan ◽  
Z. M. Huang ◽  
F. Yang ◽  
S. Ramakrishna

Scaffold plays a critical role in tissue engineering where it provides necessary structural support for the cells to accommodate and to guide their growth in the three dimensional space into a specific tissue. Therefore, engineering scaffolds favorable for cell/tissue growth is of great importance and a pre-requisite for scaffold-based tissue engineering. Electrospinning is a versatile method that has been recently adapted in engineering nano-fibrous scaffolds that mimic the structural features of biological extracellular matrix (ECM). It offers many advantages over conventional scaffold methodologies, for example, capable of producing ultra-fine fibers with high porosity, high spatial orientation, high aspect ratio, and high surface area, which are highly required for the initial cell attachment, tissue formation, and continued function. Considering these astonishing merits, this article emphasis on nano-fibrous scaffold engineering by electrospinning.

2017 ◽  
Vol 89 (12) ◽  
pp. 1799-1808 ◽  
Author(s):  
Sakthivel Nagarajan ◽  
Céline Pochat-Bohatier ◽  
Sébastien Balme ◽  
Philippe Miele ◽  
S. Narayana Kalkura ◽  
...  

AbstractElectrospinning is a versatile technique to produce micron or nano sized fibers using synthetic or bio polymers. The unique structural characteristic of the electrospun mats (ESM) which mimics extracellular matrix (ECM) found influential in regenerative tissue engineering application. ESM with different morphologies or ESM functionalizing with specific growth factors creates a favorable microenvironment for the stem cell attachment, proliferation and differentiation. Fiber size, alignment and mechanical properties affect also the cell adhesion and gene expression. Hence, the effect of ESM physical properties on stem cell differentiation for neural, bone, cartilage, ocular and heart tissue regeneration will be reviewed and summarized. Electrospun fibers having high surface area to volume ratio present several advantages for drug/biomolecule delivery. Indeed, controlling the release of drugs/biomolecules is essential for sustained delivery application. Various possibilities to control the release of hydrophilic or hydrophobic drug from the ESM and different electrospinning methods such as emulsion electrospinning and coaxial electrospinning for drug/biomolecule loading are summarized in this review.


2021 ◽  
Author(s):  
Yong-Mei Wang ◽  
Xinxin Zhang ◽  
Dingyi Yang ◽  
Liting Wu ◽  
Jiaojiao Zhang ◽  
...  

Abstract The high porosity, controllable size, high surface area, and chemical versatility of a metal-organic framework (MOF) enable it a good material for a triboelectric nanogenerator (TENG), and some MOFs have been incorporated in the fabrication of TENGs. However, the understanding of effects of MOFs on the energy conversion of a TENG is still lacking, which inhibits the improvement of the performance of MOF-based TENGs. Here, UiO-66-NH2 MOFs were found to significantly increase the power of a TENG and the mechanism was carefully examined. The electron-withdrawing ability of Zr-based UiO-66-family MOFs was enhanced by designing the amino functionalized 1,4-terephthalic acid (1,4-BDC) as ligand. The chemically modified UiO-66-NH2 was found to increase the surface roughness and surface potential of a composite film with MOFs embedded in polydimethylsiloxane (PDMS) matrix. Thus the total charges due to the contact electrification increased significantly. The composite-based TENG was found to be very durable and its output voltage and current were 4 times and 60 times higher than that of a PDMS-based TENG. This work revealed an effective strategy to design MOFs with excellent electron-withdrawing abilities for high-performance TENGs.


2021 ◽  
Vol 06 ◽  
Author(s):  
Varun Saxena ◽  
Lalit Pandey ◽  
T. S. Srivatsan

Background: Hydroxyapatite (HAp) is one of the most studied biomimic for biomedical applications. Specially, nano-HAp has been utilized for bone tissue engineering various orthopedic applications. HAp possesses various suitable properties such as bioactivity, biodegradability and cell proliferation efficiency for bone tissue engineering applications. Yet, lacks in self-antibacterial activity, high surface area and target efficiency. Results: In this directioon, researchers have focused on exploring the required surface as well as the inherent properties of HAp at the nanoscale. These properties are largely dependent on the composition, size and morphology of the nano-HAp. Hence, nano-HAp has been found to be an excellent candidate with an attractive combination of properties for selection and use in biomedical applications, those required to enhanced biological responses. Further, depending on the type of application, these factors can be tuned to optimize the performance. Conclusion: In this review article, we focus on the chemical structure of HAp and the routes chosen and used for the synthesis of the nano-HAp. The role of various parameters in controlling synthesis at the nanoscale are presented and briefly discussed. In addition, we provide an overview of the various applications for the pristine and doped nano-HAp with recent examples in areas spanning the following: (i) bone tissue engineering applications, (ii) drug delivery applications, (iii) surface coatings, and (iv) scaffolds. The effect of chemical composition on the mechanical properties, surface properties and biological properties are also highlighted. Nano-HAp is found to be highly proficient for its biomedical applications, especially for bone tissue engineering applications. The nano-sized properties enhances the biological responses. The dopant ions that replaces the Ca ion into the hydroxyapatite (HAp) lattice plays a crucial role in its biomedical applications


2019 ◽  
Vol 966 ◽  
pp. 444-450 ◽  
Author(s):  
Fandi Angga Prasetya ◽  
Ufafa Anggarini ◽  
Yudha Zakaria ◽  
Rosa Dwi Sasqia Putri

Supercapacitor require electrode which has high surface area so that it able to store large amounts of charge. In this study, electrode was synthesized from carbon of Borassus Flabellifer L fiber which was carried out through activation and carbonization processes. Raw material was calcined at 400°C for 4 hours followed by activation with NaOH 1 M. The carbonization was then conducted in Nitrogen gas flowing by temperature variations; 650°C, 750°C, and 850°C with a constant heating rate of 20 °C/min. Based on XRD data, it was shown that the material has formed Reduced graphene Oxide (RGO) which has main peaks at (2θ) 240 and 440 with higher purity in higher temperature. SEM results clarified more pores formation at higher temperature which is mesoporous. Cyclic Voltammetry (CV) test was done to determine the capacitance value. By RGO forming with high porosity, it is suitable for supercapacitor electrode application and CV test has examined that heating of Borassus Flabelifer L fiber at 850°C with 5 mV/s scan rate has the highest specific capacitance by 8.25 F/gram with Energy density is 4.125 watt/gram.


Materials ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2299 ◽  
Author(s):  
Paulina Chilimoniuk ◽  
Marta Michalska-Domańska ◽  
Tomasz Czujko

Nanostructured anodic oxide layers on an FeAl3 intermetallic alloy were prepared by two-step anodization in 20 wt% H2SO4 at 0 °C. The voltage range was 10.0–22.5 V with a step of 2.5 V. The structural and morphological characterizations of the received anodic oxide layers were performed by field emission scanning electron microscopy (FE-SEM). Therefore, the formed anodic oxide was found to be highly porous with a high surface area, as indicated by the FE-SEM studies. It has been shown that the morphology of fabricated nanoporous oxide layers is strongly affected by the anodization potential. The oxide growth rate first increased slowly (from 0.010 μm/s for 10 V to 0.02 μm/s for 15 V) and then very rapidly (from 0.04 μm/s for 17.5 V up to 0.13 μm/s for 22.5 V). The same trend was observed for the change in the oxide thickness. Moreover, for all investigated anodizing voltages, the structural features of the anodic oxide layers, such as the pore diameter and interpore distance, increased with increasing anodizing potential. The obtained anodic oxide layer was identified as a crystalline FeAl2O4, Fe2O3 and Al2O3 oxide mixture.


2019 ◽  
Vol 14 ◽  
pp. 155892501882490 ◽  
Author(s):  
Fatma Yalcinkaya

The importance of the nanofiber webs increases rapidly due to their highly porous structure, narrow pore size, and distribution; specific surface area and compatibility with inorganics. Electrospinning has been introduced as one of the most efficient technique for the fabrication of polymeric nanofibers due to its ability to fabricate nanostructures with unique properties such as a high surface area and porosity. The process and the operating parameters affect the nanofiber fabrication and the application of nanofibers in various fields, such as sensors, tissue engineering, wound dressing, protective clothes, filtration, desalination, and distillation. In this review, a comprehensive study is presented on the parameters of electrospinning system including applications. More emphasis is given to the application of nanofibers in membrane distillation (MD). The research developments and the current situation of the nanofiber webs in MD are also discussed.


2005 ◽  
Vol 288-289 ◽  
pp. 139-142 ◽  
Author(s):  
Xian Tao Wen ◽  
Hong Song Fan ◽  
Yan Fei Tan ◽  
H.D. Cao ◽  
H. Li ◽  
...  

A electrospinning process to prepare soft tissue engineering scaffold was introduced in this study. This kind of scaffold was composed with ultrathin fiber and characterized with high porosity, well-interconnected pores and high surface-to-volume ratio. Biodegradable polylaticacid (PLA) was used to spin the scaffold and the scaffold was evaluated in vitro by analysis the microscopic structure, porosity, mechanical property, especially cytocompatibility. The results indicated that the electrospun PLA scaffold showed good cytocompatibility and the tensile property of electrospun scaffold was similar to human’s soft tissue. It could be expected that the electrospun scaffold would be potential in soft tissue engineering or soft tissue repair.


Author(s):  
Jinah Jang ◽  
Junghyuk Ko ◽  
Dong-Woo Cho ◽  
Martin B. G. Jun ◽  
Deok-Ho Kim

Development of a small-diameter vascular graft (<6 mm) have been challenging due to thrombosis and intimal hyperplasia [1]. To overcome this problem, cardiovascular tissue engineers have attempted to construct a highly porous and biocompatible fibrous scaffold providing a sufficient mechanical strength for the regeneration of a functional tissue [2–5]. Herein, we present a 3D tubular-shaped micro/nanofibrous composite-layered scaffold for vascular tissue engineering. The surface of scaffold has high surface roughness by introducing nanofibrous layer and the biophysical properties have been fulfilled by using microfibrous layer. Moreover, the atomized spraying technique is applied to spray elastin proteins, which is well known as an antithrombogenic material, on the surface of micro/nanofibrous composite-layered scaffold to introduce an appropriate antithrombogenic surface.


Sign in / Sign up

Export Citation Format

Share Document