scholarly journals NIR Light-Triggered Chemo-Phototherapy by ICG Functionalized MWNTs for Synergistic Tumor-Targeted Delivery

Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2145
Author(s):  
Lu Tang ◽  
Aining Zhang ◽  
Yijun Mei ◽  
Qiaqia Xiao ◽  
Xiangting Xu ◽  
...  

The combinational application of photothermal therapy (PTT), chemotherapy, and nanotechnology is a booming therapeutic strategy for cancer treatment. Multi-walled carbon nanotube (MWNT) is often utilized as drug carrier in biomedical fields with excellent photothermal properties, and indocyanine green (ICG) is a near-infrared (NIR) dye approved by FDA. In addition, ICG is also a photothermal agent that can strongly absorb light energy for tumor ablation. Herein, we explored a synergistic strategy by connecting MWNT and a kind of ICG derivate ICG-NH2 through hyaluronic acid (HA) that possesses CD44 receptor targeting ability, which largely enhanced the PTT effect of both MWNT and ICG-NH2. To realize the synergistic therapeutic effect of chemotherapy and phototherapy, doxorubicin (DOX) was attached on the wall of MWNT via π–π interaction to obtain the final MWNT-HA-ICG/DOX nanocomplexes. Both in vitro and in vivo experiments verified the great therapeutic efficacy of MWNT-HA-ICG/DOX nanocomplexes, which was characterized by improved photothermal performance, strengthened cytotoxicity, and elevated tumor growth inhibition based on MCF-7 tumor models. Therefore, this synergistic strategy we report here might offer a new idea with promising application prospect for cancer treatment.

Author(s):  
Chuangjia Huang ◽  
Xiaoling Guan ◽  
Hui Lin ◽  
Lu Liang ◽  
Yingling Miao ◽  
...  

Indocyanine green (ICG), a near-infrared (NIR) fluorescent dye approved by the Food and Drug Administration (FDA), has been extensively used as a photoacoustic (PA) probe for PA imaging. However, its practical application is limited by poor photostability in water, rapid body clearance, and non-specificity. Herein, we fabricated a novel biomimetic nanoprobe by coating ICG-loaded mesoporous silica nanoparticles with the cancer cell membrane (namely, CMI) for PA imaging. This probe exhibited good dispersion, large loading efficiency, good biocompatibility, and homologous targeting ability to Hela cells in vitro. Furthermore, the in vivo and ex vivo PA imaging on Hela tumor-bearing nude mice demonstrated that CMI could accumulate in tumor tissue and display a superior PA imaging efficacy compared with free ICG. All these results demonstrated that CMI might be a promising contrast agent for PA imaging of cervical carcinoma.


2019 ◽  
Vol 15 (11) ◽  
pp. 2151-2163 ◽  
Author(s):  
Lei Fang ◽  
Huaying Fan ◽  
Chunjing Guo ◽  
Linhan Cui ◽  
Peng Zhang ◽  
...  

Polymeric nanoparticles were widely used as delivery vehicles for targeted delivery of anticancer drugs, because of their targeting property and versatility. Mitochondria are one of the important organelles that regulate the apoptosis of cancer cells and can be considered as a pivotal target for cancer treatment. A pH-responsive charge-reversal and mitochondrial targeting nanoparticles, Vitamin B6-oligomeric hyaluronic acid-dithiodipropionic acid-berberine (B6-oHA-SS-Ber), were prepared in this study. Ber is a lipophilic cation that was conjugated with oHA through disulfide bonds to produce mitochondria-targeted conjugates (oHA-SS-Ber). B6 was conjugated to oHA to obtain B6-oHA-SS-Ber and the two types of Cur-loaded nanoparticles (Cur-NPs) were formulated by the dialysis method. Due to pKa of B6, the charge they carried in the tumor tissue acidic microenvironment can be transferred from negative charge to positive charge, further targeting mitochondria. In our study, we successfully synthesized B6-HA-SS-Ber and characterized the structure by 1H-NMR. According to the results of transmission electron microscopy (TEM), we found that the B6-oHA-SS-Ber/Cur micelles could self-assembled in water to form spherical nanoparticles, with a hydrodynamic diameter of 172.9±13 nm. Moreover, in vitro cytotoxicity, cellular uptake, lysosome escape and mitochondrial distribution researches revealed the better effect of B6-oHA-SS-Ber/Cur micelles in comparison to oHA-SS-Ber/Cur. In vivo anticancer activities indicated that the B6-oHA-SS-Ber/Cur micelles exhibited effective inhibition of tumor growth.


2017 ◽  
Vol 9 (2) ◽  
Author(s):  
Do Won Hwang ◽  
Byung Hee Hong ◽  
Dong Soo Lee

AbstractGraphene oxide (GO) nanomaterials offer a wide range of bioimaging applicability. Almost complete quenching ability of fluorescence by GO and natural interaction of GO with single stranded nucleic acid made GO a useful and intriguing multifunctional nanoplatform both as a biosensor for in vitro microplate diagnostics and as a drug delivery carrier for targeted delivery. GO’s large surface area and strong near infrared absorbance contribute to enhancement of a therapeutic effect with abundant loading of drugs for possible photothermal and photodynamic therapy. Bioimaging capability of GO made it a good theranostic tool, while enabling tracing in vivo pharmacokinetics during concurrent treatment. Fluorescence, either signal on or off, Raman and surface-enhanced Raman scattering (SERs), photoacoustic, and radionuclide imaging modalities can be used for theranostic purposes using GO nanomaterials. In this review, we highlight current applications of GO for bioimaging that are classified into in vitro microplate, in vitro cellular and in vivo bioimaging.


Author(s):  
Jun Yao ◽  
Chuanda Zhu ◽  
Tianjiao Peng ◽  
Qiang Ma ◽  
Shegan Gao

Recently, organic–inorganic hybrid materials have gained much attention as effective photothermal agents for cancer treatment. In this study, Pluronic F127 hydrogel-coated titanium carbide (Ti3C2) nanoparticles were utilized as an injectable photothermal agent. The advantages of these nanoparticles are their green synthesis and excellent photothermal efficiency. In this system, lasers were mainly used to irradiate Ti3C2 nanoparticles to produce a constant high temperature, which damaged cancer cells. The nanoparticles were found to be stable during storage at low temperatures for at least 2 weeks. The Ti3C2 nanoparticles exhibited a shuttle-shaped structure, and the hydrogels presented a loosely meshed structure. In addition, Ti3C2 nanoparticles did not affect the reversible temperature sensitivity of the gel, and the hydrogel did not affect the photothermal properties of Ti3C2 nanoparticles. The in vitro and in vivo results show that this hydrogel system can effectively inhibit tumor growth upon exposure to near-infrared irradiation with excellent biocompatibility and biosafety. The photothermal agent-embedded hydrogel is a promising photothermal therapeutic strategy for cancer treatment by enhancing the retention in vivo and elevating the local temperature in tumors.


2018 ◽  
Vol 16 (1) ◽  
pp. 4-20 ◽  
Author(s):  
Marina A Dumpis ◽  
Dmitrii N Nikolayev ◽  
Elena V Litasova ◽  
Viktor V Iljin ◽  
Mariya A Brusina ◽  
...  

The review deals with the properties of fullerenes and their derivatives and the possibility of their use in biology and medicine. Fullerenes can exert an antioxidant effect in biological systems, catching active forms of oxygen, and oxidative, giving the fullerene photosensitizing properties. The lipophilic fullerene molecules possessing membrane - tropic action interact with various biological structures and can change the functions of these structures, increasing the lipophilicity of the active molecule (amino acids, nucleic acids, proteins, etc.). Data on the biological effect of fullerenes in in vitro and in vivo experiments are given. Examples of targeted delivery of known therapeutic agents. (For citation: Dumpis MA, Nikolaev DN, Litasova EV, et al. Biological activity of fullerenes - reality and prospects. Reviews on Clinical Pharmacology and Drug Therapy. 2018;16(1):4-20. doi: 10.17816/RCF1614-20).


2021 ◽  
Author(s):  
Chenxi Li ◽  
Rui Liu ◽  
Yurong Song ◽  
Dongjie Zhu ◽  
Liuchunyang Yu ◽  
...  

Abstract Triptolide (TP) as a disease-modifying anti-rheumatic drug (DMARD) is effective on the treatment of rheumatoid arthritis (RA). To alleviate the toxicity and elevate therapeutic specificity, hyaluronic acid (HA) hydrogels load RGD-attached gold nanoshell containing TP are synthesized, which can be used for targeted photothermal-chemo therapy, and imaging of RA in vivo. The hydrogels system composed of thiol and tyramine modified HA conjugates has been applied artificial tissue models of cartilage for studying drug delivery and release properties. After the degradation of HA chains, heat together with drugs can be delivered to the inflammatory joints simultaneously due to the near-infrared resonance (NIR) irradiation of Au nanoshell. RA is a chronic inflamed disease, which is characterized by synovial inflammation of multiple joints, and can be penetrated with NIR light. These intra-articular administrated hybrid hydrogels combined with NIR irradiation can improve clinical arthritic conditions and inflamed joints in collagen-induced arthritis (CIA) mice, which just need a smaller dosage of TP with non-toxicity. Additionally, the TP-Au/HA hybrid hydrogels treatment reduced the invasion and migration of RA fibroblast-like synoviocytes (RA-FLSs) in vitro significantly, through reducing the phosphorylation of mTOR and p70S6K, its substrates, and confirmed that the mTOR pathway was inhibited.


2018 ◽  
Vol 115 (26) ◽  
pp. 6632-6637 ◽  
Author(s):  
He Ding ◽  
Lihui Lu ◽  
Zhao Shi ◽  
Dan Wang ◽  
Lizhu Li ◽  
...  

Optical upconversion that converts infrared light into visible light is of significant interest for broad applications in biomedicine, imaging, and displays. Conventional upconversion materials rely on nonlinear light-matter interactions, exhibit incidence-dependent efficiencies, and require high-power excitation. We report an infrared-to-visible upconversion strategy based on fully integrated microscale optoelectronic devices. These thin-film, ultraminiaturized devices realize near-infrared (∼810 nm) to visible [630 nm (red) or 590 nm (yellow)] upconversion that is linearly dependent on incoherent, low-power excitation, with a quantum yield of ∼1.5%. Additional features of this upconversion design include broadband absorption, wide-emission spectral tunability, and fast dynamics. Encapsulated, freestanding devices are transferred onto heterogeneous substrates and show desirable biocompatibilities within biological fluids and tissues. These microscale devices are implanted in behaving animals, with in vitro and in vivo experiments demonstrating their utility for optogenetic neuromodulation. This approach provides a versatile route to achieve upconversion throughout the entire visible spectral range at lower power and higher efficiency than has previously been possible.


Author(s):  
Jang Hyuk Bang ◽  
Kyung Ah Kim ◽  
Yeong Chae Ryu ◽  
Byoung Choul Kim ◽  
BYEONG HEE HWANG

Breast cancer is one of the serious diseases and has the second-highest mortality in women worldwide. RNA interference has been developed as a promising way of specific cancer treatment by silencing oncogenes efficiently. However, small RNAs exhibits difficulties in specific cellular uptake and instability. Therefore, we designed novel fusion peptides (RS and RT) for an efficient, stable, and specific delivery of small RNAs. Both RS and RT peptides could form self-assembled nanocomplexes via electrostatic attraction. RS nanocomplexes exhibited prolonged stability, enhanced cellular uptake, and target gene silencing by siRNAs to MDA-MB-231 breast cancer cells. Moreover, RS nanocomplexes successfully inhibited breast cancer cell growth via specific and efficient siRNA delivery. Furthermore, in vitro and in vivo safety tests showed negligible cytotoxicity and neither tissue damage nor significant inflammatory cytokine release. Therefore, the RS nanocomplexes could be expected to become a promising siRNA delivery platform for the treatment of breast cancer or other cancers.


2021 ◽  
Author(s):  
zhu yu ◽  
Wenlong Cao ◽  
Chuangye Han ◽  
Zhen Wang ◽  
Yue Qiu ◽  
...  

Abstract In recent years, sonodynamic therapy (SDT) has been widely developed for cancer research as a promising non-invasive therapeutic strategy. Here, we synthesized Zeolitic imidazole frameworks-8 (ZIF-8) and utilized its properties to encapsulate hydrophobic Chlorin e6 (Ce6) and hydrophilic tirapazamine (TPZ) for a synergistic sonodynamic-chemotherapy, which was also accompanied by the modification of cytomembrane of gastric cancer (GC) cells. Thus, we enabled the biomimetic property to achieve targeted delivery. Ce6-mediated SDT, in combination with ultrasound irradiation, could target the release of reactive oxygen species (ROS) to aggravate further hypoxia, which activated TPZ. Combining these effects could induce the pyroptosis of GC cells. Both in vitro and in vivo experiments showed that the nanoparticle had good biocompatibility and anti-cancer function, which could provide a potential therapeutic method for cancer therapy.


2015 ◽  
Vol 112 (7) ◽  
pp. 1953-1958 ◽  
Author(s):  
Ryan S. Stowers ◽  
Shane C. Allen ◽  
Laura J. Suggs

Hydrogels are widely used as in vitro culture models to mimic 3D cellular microenvironments. The stiffness of the extracellular matrix is known to influence cell phenotype, inspiring work toward unraveling the role of stiffness on cell behavior using hydrogels. However, in many biological processes such as embryonic development, wound healing, and tumorigenesis, the microenvironment is highly dynamic, leading to changes in matrix stiffness over a broad range of timescales. To recapitulate dynamic microenvironments, a hydrogel with temporally tunable stiffness is needed. Here, we present a system in which alginate gel stiffness can be temporally modulated by light-triggered release of calcium or a chelator from liposomes. Others have shown softening via photodegradation or stiffening via secondary cross-linking; however, our system is capable of both dynamic stiffening and softening. Dynamic modulation of stiffness can be induced at least 14 d after gelation and can be spatially controlled to produce gradients and patterns. We use this system to investigate the regulation of fibroblast morphology by stiffness in both nondegradable gels and gels with degradable elements. Interestingly, stiffening inhibits fibroblast spreading through either mesenchymal or amoeboid migration modes. We demonstrate this technology can be translated in vivo by using deeply penetrating near-infrared light for transdermal stiffness modulation, enabling external control of gel stiffness. Temporal modulation of hydrogel stiffness is a powerful tool that will enable investigation of the role that dynamic microenvironments play in biological processes both in vitro and in well-controlled in vivo experiments.


Sign in / Sign up

Export Citation Format

Share Document