scholarly journals On the Direction of Time: From Reichenbach to Prigogine and Penrose

Philosophies ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 79
Author(s):  
Said Mikki

The question why natural processes tend to flow along a preferred direction has always been considered from within the perspective of the Second Law of Thermodynamics, especially its statistical formulation due to Maxwell and Boltzmann. In this article, we re-examine the subject from the perspective of a new historico-philosophical formulation based on the careful use of selected theoretical elements taken from three key modern thinkers: Hans Reichenbach, Ilya Prigogine, and Roger Penrose, who are seldom considered together in the literature. We emphasize in our analysis how the entropy concept was introduced in response to the desire to extend the applicability of the Second Law to the cosmos at large (Reichenbach and Penrose), and to examine whether intrinsic irreversibility is a fundamental universal characteristics of nature (Prigogine). While the three thinkers operate with vastly different technical proposals and belong to quite distinct intellectual backgrounds, some similarities are detected in their thinking. We philosophically examine these similarities but also bring into focus the uniqueness of each approach. Our purpose is not providing an exhaustive derivations of logical concepts identified in one thinker in terms of ideas found in the others. Instead, the main objective of this work is to stimulate historico-philosophical investigations and inquiries into the problem of the direction of time in nature by way of crossdisciplinary examinations of previous theories commonly treated in literature as disparate domains.

Author(s):  
A. O¨zer Arnas ◽  
Daisie D. Boettner ◽  
Seth A. Norberg ◽  
Gunnar Tamm ◽  
Jason R. Whipple

Performance evaluation and assessment of combined cycle cogeneration systems are not taught well in academia. One reason is these parameters are scattered in the literature with each publication starting and ending at different stages. In many institutions professors do not discuss or even mention these topics, particularly from a second law perspective. When teaching combined cycle cogeneration systems to undergraduates, the professor should introduce pertinent parameters in a systematic fashion and discuss the usefulness and limitations of each parameter. Ultimately for a given situation, the student should be able to determine which parameters form the most appropriate basis for comparison when considering alternative designs. This paper provides two approaches, one based on energy (the First Law of Thermodynamics) and the other based on exergy (the Second Law of Thermodynamics). These approaches are discussed with emphasis on the “precise” teaching of the subject matter to undergraduates. The intent is to make coverage of the combined cycle cogeneration systems manageable so that professors can appropriately incorporate the topic into the curricula with relative ease.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
A. Özer Arnas ◽  
Daisie D. Boettner ◽  
Seth A. Norberg ◽  
Gunnar Tamm ◽  
Jason R. Whipple

Performance evaluation and assessment of combined cycle cogeneration systems are not taught well in academia. One reason is these parameters are scattered in the literature with each publication starting and ending at different stages. In many institutions professors do not discuss or even mention these topics, particularly from a second law perspective. When teaching combined cycle cogeneration systems to undergraduates, the professor should introduce pertinent parameters in a systematic fashion and discuss the usefulness and limitations of each parameter. Ultimately for a given situation, the student should be able to determine which parameters form the most appropriate basis for comparison when considering alternative designs. This paper provides two approaches, one based on energy (the first law of thermodynamics) and the other based on exergy (the second law of thermodynamics). These approaches are discussed with emphasis on the “precise” teaching of the subject matter to undergraduates. The intent is to make coverage of the combined cycle cogeneration systems manageable so that professors can appropriately incorporate the topic into the curricula with relative ease.


Philosophy ◽  
1934 ◽  
Vol 9 (34) ◽  
pp. 146-156
Author(s):  
W. R. Inge

The subject which has been chosen for me is sufficiently comprehensive. Several years ago I wrote the last of a series of essays in a book calledScience, Religion, and Reality, in which, as requested, I tried to sum up the contributions of the other writers, with reflections of my own. I have also given a short statement of my opinions in the first volume of that interesting book,Contemporary British Philosophy. Lastly, I have tried, in a book published in the autumn of 1933, to consider the religious and philosophical implications of recent scientific theories and discoveries, and particularly of the conviction held by our leading astronomers and mathematicians that the Second Law of Thermodynamics is unassailable, so that the ultimate extinction of the universe as we know it is certain. I showed that the acceptance of this verdict raises important questions for the philosopher and theologian.


Author(s):  
A. M. Savchenko ◽  
Yu. V. Konovalov ◽  
A. V. Laushkin

The relationship of the first and second laws of thermodynamics based on their energy nature is considered. It is noted that the processes described by the second law of thermodynamics often take place hidden within the system, which makes it difficult to detect them. Nevertheless, even with ideal mixing, an increase in the internal energy of the system occurs, numerically equal to an increase in free energy. The largest contribution to the change in the value of free energy is made by the entropy of mixing, which has energy significance. The entropy of mixing can do the job, which is confirmed in particular by osmotic processes.


Author(s):  
Olivier Darrigol

This chapter recounts how Boltzmann reacted to Hermann Helmholtz’s analogy between thermodynamic systems and a special kind of mechanical system (the “monocyclic systems”) by grouping all attempts to relate thermodynamics to mechanics, including the kinetic-molecular analogy, into a family of partial analogies all derivable from what we would now call a microcanonical ensemble. At that time, Boltzmann regarded ensemble-based statistical mechanics as the royal road to the laws of thermal equilibrium (as we now do). In the same period, he returned to the Boltzmann equation and the H theorem in reply to Peter Guthrie Tait’s attack on the equipartition theorem. He also made a non-technical survey of the second law of thermodynamics seen as a law of probability increase.


2018 ◽  
Author(s):  
M. T. Nitsas ◽  
I. P. Koronaki ◽  
L. Prentza

The utilization of solar energy in thermal energy systems was and always be one of the most effective alternative to conventional energy resources. Energy efficiency is widely used as one of the most important parameters in order to evaluate and compare thermal systems including solar collectors. Nevertheless, the first law of thermodynamics is not solely capable of describing the quantitative and qualitative performance of such systems and thus exergy efficiency is used so as to introduce the systems’ quality. In this work, the performance of a flat plate solar collector using water based nanofluids of different nanoparticle types as a working fluid is analyzed theoretically under the climatic conditions in Greece based on the First and Second Law of Thermodynamics. A mathematical model is built and the model equations are solved iteratively in a MATLAB code. The energy and exergy efficiencies as well as the collector losses coefficient for various parameters such as the inlet temperature, the particles concentration and type are determined. Moreover, a dynamic model is built so as to determine the performance of a flat plate collector working with nanofluids and the useful energy that can be stored in a water tank. The exergy destruction and exergy leakage are determined for a typical day in summer during which high temperatures and solar intensity values are common for the Greek climate.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Tasawar Hayat ◽  
Ikram Ullah ◽  
Ahmad Alsaedi ◽  
Shaher Momani

Abstract Our intention in this article is to investigate entropy optimization in nonlinear mixed convective unsteady magnetohydrodynamic flow of nanomaterials in porous space. An exponentially stretched sheet creates the liquid flow. Nanomaterial is considered electrically conducting. The concentration and energy expressions comprise viscous dissipation, Joule heating, thermophoresis and Brownian motion aspects. Arrhenius activation energy is considered. Computation of entropy generation based upon the second law of thermodynamics is made. Nonlinear partial expressions are obtained via suitable dimensionless variables. Resultant expressions are tackled by the OHAM technique. Features of numerous variables on entropy, temperature, velocity and concentration are graphically visualized. Skin friction and the temperature gradient at the surface are also elaborated. Comparative analysis is deliberated in tabulated form to validate the previously published outcomes. Velocity is reduced significantly via the suction parameter. The entropy rate increases for higher values of Brinkman, Biot and Hartmann numbers.


2020 ◽  
Vol 45 (2) ◽  
pp. 121-132
Author(s):  
Daniel P. Sheehan

AbstractCanonical statistical mechanics hinges on two quantities, i. e., state degeneracy and the Boltzmann factor, the latter of which usually dominates thermodynamic behaviors. A recently identified phenomenon (supradegeneracy) reverses this order of dominance and predicts effects for equilibrium that are normally associated with non-equilibrium, including population inversion and steady-state particle and energy currents. This study examines two thermodynamic paradoxes that arise from supradegeneracy and proposes laboratory experiments by which they might be resolved.


Sign in / Sign up

Export Citation Format

Share Document