scholarly journals The Role of Polyphenols in Abiotic Stress Response: The Influence of Molecular Structure

Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 118
Author(s):  
Dunja Šamec ◽  
Erna Karalija ◽  
Ivana Šola ◽  
Valerija Vujčić Bok ◽  
Branka Salopek-Sondi

Abiotic stressors such as extreme temperatures, drought, flood, light, salt, and heavy metals alter biological diversity and crop production worldwide. Therefore, it is important to know the mechanisms by which plants cope with stress conditions. Polyphenols, which are the largest group of plant-specialized metabolites, are generally recognized as molecules involved in stress protection in plants. This diverse group of metabolites contains various structures, from simple forms consisting of one aromatic ring to more complex ones consisting of large number of polymerized molecules. Consequently, all these molecules, depending on their structure, may show different roles in plant growth, development, and stress protection. In the present review, we aimed to summarize data on how different polyphenol structures influence their biological activity and their roles in abiotic stress responses. We focused our review on phenolic acids, flavonoids, stilbenoids, and lignans.

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Uday Chand Jha ◽  
Harsh Nayyar ◽  
Rintu Jha ◽  
Muhammad Khurshid ◽  
Meiliang Zhou ◽  
...  

Abstract Background The immobile nature of plants means that they can be frequently confronted by various biotic and abiotic stresses during their lifecycle. Among the various abiotic stresses, water stress, temperature extremities, salinity, and heavy metal toxicity are the major abiotic stresses challenging overall plant growth. Plants have evolved complex molecular mechanisms to adapt under the given abiotic stresses. Long non-coding RNAs (lncRNAs)—a diverse class of RNAs that contain > 200 nucleotides(nt)—play an essential role in plant adaptation to various abiotic stresses. Results LncRNAs play a significant role as ‘biological regulators’ for various developmental processes and biotic and abiotic stress responses in animals and plants at the transcription, post-transcription, and epigenetic level, targeting various stress-responsive mRNAs, regulatory gene(s) encoding transcription factors, and numerous microRNAs (miRNAs) that regulate the expression of different genes. However, the mechanistic role of lncRNAs at the molecular level, and possible target gene(s) contributing to plant abiotic stress response and adaptation, remain largely unknown. Here, we review various types of lncRNAs found in different plant species, with a focus on understanding the complex molecular mechanisms that contribute to abiotic stress tolerance in plants. We start by discussing the biogenesis, type and function, phylogenetic relationships, and sequence conservation of lncRNAs. Next, we review the role of lncRNAs controlling various abiotic stresses, including drought, heat, cold, heavy metal toxicity, and nutrient deficiency, with relevant examples from various plant species. Lastly, we briefly discuss the various lncRNA databases and the role of bioinformatics for predicting the structural and functional annotation of novel lncRNAs. Conclusions Understanding the intricate molecular mechanisms of stress-responsive lncRNAs is in its infancy. The availability of a comprehensive atlas of lncRNAs across whole genomes in crop plants, coupled with a comprehensive understanding of the complex molecular mechanisms that regulate various abiotic stress responses, will enable us to use lncRNAs as potential biomarkers for tailoring abiotic stress-tolerant plants in the future.


2019 ◽  
Author(s):  
Mohan Singh Rajkumar ◽  
Rama Shankar ◽  
Rohini Garg ◽  
Mukesh Jain

AbstractDNA methylation is an epigenetic mark that controls gene expression in response to internal and environmental cues. In this study, we sought to understand the role of DNA methylation in response to desiccation and salinity stresses in three rice cultivars (IR64, stress-sensitive; Nagina 22, drought-tolerant and Pokkali, salinity-tolerant) via bisulphite sequencing. We identified DNA methylation patterns in different genomic/genic regions and analysed their correlation with gene expression. Methylation in CG context within gene body and methylation in CHH context in distal promoter regions were positively correlated with gene expression. However, methylation in other sequence contexts and genic regions was negatively correlated with gene expression. DNA methylation was found to be most dynamic in CHH context under stress condition(s) in the rice cultivars. The expression profiles of genes involved in de-novo methylation were correlated with methylation dynamics. Hypomethylation in Nagina 22 and hypermethylation in Pokkali in response to desiccation and salinity stress, respectively, were correlated with higher expression of abiotic stress response related genes. Our results suggest an important role of DNA methylation in abiotic stress responses in rice in cultivar-specific manner. This study provides useful resource of DNA methylomes that can be integrated with other data to understand abiotic stress response in rice.HighlightBisulphite sequencing revealed single base resolution DNA methylation, and cultivar-specific differential methylation patterns and correlation with gene expression that control desiccation and salinity stress response in the rice cultivars.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11403
Author(s):  
Kai Wang ◽  
Yating Cheng ◽  
Li Yi ◽  
Hailang He ◽  
Shaofeng Zhan ◽  
...  

Tubby-Like Proteins (TLPs) are important transcription factors with many functions and are found in both animals and plants. In plants, TLPs are thought to be involved in the abiotic stress response. To reveal the potential function of TLPs in the medicinal model plant Salvia miltiorrhiza, we identified 12 S. miltiorrhiza TLPs (SmTLPs) and conducted a comprehensive analysis. We examined SmTLP gene structure, protein structure, phylogenetics, and expression analysis. Our results show that all SmTLPs, except SmTLP11, have a complete typical Tub domain. Promoter analysis revealed that most SmTLPs are involved in hormone and abiotic stress responses. Expression analysis revealed that the 12 SmTLPs could be divided into three categories: those specifically expressed in roots, those specifically expressed in stems, and those specifically expressed in leaves. Additional studies have shown that SmTLP10 may play an important role in the plant cold resistance, while SmTLP12 may be involved in the S. miltiorrhiza ABA metabolic pathway. Our study represents the first comprehensive investigation of TLPs in S. miltiorrhiza. These data may provide useful clues for future studies and may support the hypotheses regarding the role of TLPs in plant abiotic stress process. All in all, we may provide a reference for improving S. miltiorrhiza quality using genetic engineering technology.


2021 ◽  
Vol 22 (15) ◽  
pp. 7915
Author(s):  
Tae-Houn Kim ◽  
Eun-Joo Park

Plants have evolutionarily established resistance responses to a variety of abiotic stress conditions, in which ABA mediates the integrated regulation of these stress responses. Numerous proteins function at the transcription level or at the protein level when contributing to controls of the ABA signaling process. Although osmotin is identified as a salt-inducible protein, its function in the abiotic stress response is yet to be elucidated. To examine the role of Arabidopsis OSMOTIN 34 (OSM34) in the ABA signaling pathway, a deletion mutant osm34 generated by a CRISPR/Cas9 system and the double mutant osm34 osml (osmotin 34-like) were analyzed for various ABA responses. Both osm34 and osm34 osml showed reduced levels of ABA responses in seeds and leaves. Moreover, proline level and expression of the proline biosynthesis gene P5CS1 was significantly reduced in osm34 osml. Interestingly, OSM34 binds to SKP2A, an F-Box protein whose transcription is induced by ABA. The protein stability of OSM34 was determined to be under the control of the 26S proteasome. In conclusion, our data suggest that OSM34 functions as a positive regulator in the generation of ABA responses and is under post-translational control.


2020 ◽  
Vol 28 (S2) ◽  
Author(s):  
Fauziah Abu Bakar ◽  
Pavitra Paramalingam ◽  
Kamariah Hasan

Carica papaya is a well-liked and economically important fruit with outstanding nutritional and medicinal values. Its susceptibility to abiotic stress which affects the growth and harvest, causes significant yield loss to farmers. In recent years, significant progress has been made to understand the genes that play critical roles in abiotic stress response, especially some transcription factor (TF) encoding genes. Among all TFs, WRKY TF gene family is one of the best-studied TFs involved in various stress responses. To date, only limited information on functionally characterised WRKY TFs is available for C. papaya. The aim of this study was to produce a recombinant construct harbouring WRKY gene in pGEM®-T Easy cloning vector. The presence of a DNA band of the expected size of 465 bp on agarose gel electrophoresis indicated that WRKY gene was successfully amplified from all treated samples. DNA sequencing analysis revealed that the amplified sequence isolated from the treated samples were closely related to Carica papaya species with 97% similarity. Following transformation, 4 out of 5 colonies that were randomly selected showed the WRKY gene had been successfully inserted into pGEM®-T Easy vector and transformed into E. coli. In future, the WRKY gene from pGEMT-WRKY recombinant construct will be cloned into the plant expression vector pCAMBIA 1304 prior to transformation in the plant. The success of demonstrating the WRKY gene towards the response in abiotic stress will enable us to produce stress tolerant transgenic crops under unfavourable conditions via genetic engineering for sustained growth.


Author(s):  
Geoffrey Onaga ◽  
Kerstin Wydra

Abstract This chapter provides an overview of the recent significant perspectives on molecules involved in response and tolerance to drought and salinity, the 2 major abiotic stresses affecting crop production, and highlights major molecular components identified in major cereals.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Hongying Zhang ◽  
Xudong Ma ◽  
Wenjiao Li ◽  
Dexin Niu ◽  
Zhaojun Wang ◽  
...  

Abstract Background The plant-specific homeodomain-leucine zipper class IV (HD-ZIP IV) gene family has been involved in the regulation of epidermal development. Results Fifteen genes coding for HD-ZIP IV proteins were identified (NtHD-ZIP-IV-1 to NtHD-ZIP-IV-15) based on the genome of N. tabacum. Four major domains (HD, ZIP, SAD and START) were present in these proteins. Tissue expression pattern analysis indicated that NtHD-ZIP-IV-1, − 2, − 3, − 10, and − 12 may be associated with trichome development; NtHD-ZIP-IV-8 was expressed only in cotyledons; NtHD-ZIP-IV-9 only in the leaf and stem epidermis; NtHD-ZIP-IV-11 only in leaves; and NtHD-ZIP-IV-15 only in the root and stem epidermis. We found that jasmonates may induce the generation of glandular trichomes, and that NtHD-ZIP-IV-1, − 2, − 5, and − 7 were response to MeJA treatment. Dynamic expression under abiotic stress and after application of phytohormones indicated that most NtHD-ZIP IV genes were induced by heat, cold, salt and drought. Furthermore, most of these genes were induced by gibberellic acid, 6-benzylaminopurine, and salicylic acid, but were inhibited by abscisic acid. NtHD-ZIP IV genes were sensitive to heat, but insensitive to osmotic stress. Conclusion NtHD-ZIP IV genes are implicated in a complex regulatory gene network controlling epidermal development and abiotic stress responses. The present study provides evidence to elucidate the gene functions of NtHD-ZIP IVs during epidermal development and stress response.


Plant Gene ◽  
2017 ◽  
Vol 11 ◽  
pp. 180-189 ◽  
Author(s):  
Sagar Banerjee ◽  
Anil Sirohi ◽  
Abid A. Ansari ◽  
Sarvajeet Singh Gill

Sign in / Sign up

Export Citation Format

Share Document