scholarly journals Arabidopsis OSMOTIN 34 Functions in the ABA Signaling Pathway and Is Regulated by Proteolysis

2021 ◽  
Vol 22 (15) ◽  
pp. 7915
Author(s):  
Tae-Houn Kim ◽  
Eun-Joo Park

Plants have evolutionarily established resistance responses to a variety of abiotic stress conditions, in which ABA mediates the integrated regulation of these stress responses. Numerous proteins function at the transcription level or at the protein level when contributing to controls of the ABA signaling process. Although osmotin is identified as a salt-inducible protein, its function in the abiotic stress response is yet to be elucidated. To examine the role of Arabidopsis OSMOTIN 34 (OSM34) in the ABA signaling pathway, a deletion mutant osm34 generated by a CRISPR/Cas9 system and the double mutant osm34 osml (osmotin 34-like) were analyzed for various ABA responses. Both osm34 and osm34 osml showed reduced levels of ABA responses in seeds and leaves. Moreover, proline level and expression of the proline biosynthesis gene P5CS1 was significantly reduced in osm34 osml. Interestingly, OSM34 binds to SKP2A, an F-Box protein whose transcription is induced by ABA. The protein stability of OSM34 was determined to be under the control of the 26S proteasome. In conclusion, our data suggest that OSM34 functions as a positive regulator in the generation of ABA responses and is under post-translational control.

2020 ◽  
Vol 21 (20) ◽  
pp. 7755
Author(s):  
Leelyn Chong ◽  
Pengcheng Guo ◽  
Yingfang Zhu

As an evolutionarily conserved multi-protein complex, the Mediator complex modulates the association between transcription factors and RNA polymerase II to precisely regulate gene transcription. Although numerous studies have shown the diverse functions of Mediator complex in plant development, flowering, hormone signaling, and biotic stress response, its roles in the Abscisic acid (ABA) signaling pathway and abiotic stress response remain largely unclear. It has been recognized that the phytohormone, ABA, plays a predominant role in regulating plant adaption to various abiotic stresses as ABA can trigger extensive changes in the transcriptome to help the plants respond to environmental stimuli. Over the past decade, the Mediator complex has been revealed to play key roles in not only regulating the ABA signaling transduction but also in the abiotic stress responses. In this review, we will summarize current knowledge of the Mediator complex in regulating the plants’ response to ABA as well as to the abiotic stresses of cold, drought and high salinity. We will particularly emphasize the involvement of multi-functional subunits of MED25, MED18, MED16, and CDK8 in response to ABA and environmental perturbation. Additionally, we will discuss potential research directions available for further deciphering the role of Mediator complex in regulating ABA and other abiotic stress responses.


Author(s):  
Nguyen Nguyen Chuong ◽  
Xuan Lan Thi Hoang ◽  
Duong Hoang Trong Nghia ◽  
Thai Ngoc Trang Dai ◽  
Van-Anh Le Thi ◽  
...  

: Plants, as sessile organisms, are susceptible to a myriad of stress factors, especially abiotic stresses. Over the course of evolution, they have developed multiple mechanisms to sense and transduce environmental stimuli for appropriate responses. Among those, phosphorylation and dephosphorylation, regulated by protein kinases and protein phosphatases, respectively, are considered as crucial signal transduction mechanisms. Regarding the latter group, protein phosphatases type 2C (PP2Cs) represent the largest division of PPs. In addition, discovery of regulatory functions of PP2Cs in abscisic acid (ABA)-signaling pathway, the major signal transduction pathway in abiotic stress responses, indicates significant importance of PP2C members in plant adaptation to adverse environmental factors. In this review, current understanding of the roles of PP2Cs in different phytohormone-dependent pathways related to abiotic stress is summarized, highlighting the crosstalk between the ABA-signaling pathway with other hormonal pathways via certain ABA-related PP2Cs. We also updated progress of in planta characterization studies of PP2Cs under abiotic stress conditions, providing knowledge of PP2C manipulation in developing abiotic stress-tolerant crops.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Uday Chand Jha ◽  
Harsh Nayyar ◽  
Rintu Jha ◽  
Muhammad Khurshid ◽  
Meiliang Zhou ◽  
...  

Abstract Background The immobile nature of plants means that they can be frequently confronted by various biotic and abiotic stresses during their lifecycle. Among the various abiotic stresses, water stress, temperature extremities, salinity, and heavy metal toxicity are the major abiotic stresses challenging overall plant growth. Plants have evolved complex molecular mechanisms to adapt under the given abiotic stresses. Long non-coding RNAs (lncRNAs)—a diverse class of RNAs that contain > 200 nucleotides(nt)—play an essential role in plant adaptation to various abiotic stresses. Results LncRNAs play a significant role as ‘biological regulators’ for various developmental processes and biotic and abiotic stress responses in animals and plants at the transcription, post-transcription, and epigenetic level, targeting various stress-responsive mRNAs, regulatory gene(s) encoding transcription factors, and numerous microRNAs (miRNAs) that regulate the expression of different genes. However, the mechanistic role of lncRNAs at the molecular level, and possible target gene(s) contributing to plant abiotic stress response and adaptation, remain largely unknown. Here, we review various types of lncRNAs found in different plant species, with a focus on understanding the complex molecular mechanisms that contribute to abiotic stress tolerance in plants. We start by discussing the biogenesis, type and function, phylogenetic relationships, and sequence conservation of lncRNAs. Next, we review the role of lncRNAs controlling various abiotic stresses, including drought, heat, cold, heavy metal toxicity, and nutrient deficiency, with relevant examples from various plant species. Lastly, we briefly discuss the various lncRNA databases and the role of bioinformatics for predicting the structural and functional annotation of novel lncRNAs. Conclusions Understanding the intricate molecular mechanisms of stress-responsive lncRNAs is in its infancy. The availability of a comprehensive atlas of lncRNAs across whole genomes in crop plants, coupled with a comprehensive understanding of the complex molecular mechanisms that regulate various abiotic stress responses, will enable us to use lncRNAs as potential biomarkers for tailoring abiotic stress-tolerant plants in the future.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 118
Author(s):  
Dunja Šamec ◽  
Erna Karalija ◽  
Ivana Šola ◽  
Valerija Vujčić Bok ◽  
Branka Salopek-Sondi

Abiotic stressors such as extreme temperatures, drought, flood, light, salt, and heavy metals alter biological diversity and crop production worldwide. Therefore, it is important to know the mechanisms by which plants cope with stress conditions. Polyphenols, which are the largest group of plant-specialized metabolites, are generally recognized as molecules involved in stress protection in plants. This diverse group of metabolites contains various structures, from simple forms consisting of one aromatic ring to more complex ones consisting of large number of polymerized molecules. Consequently, all these molecules, depending on their structure, may show different roles in plant growth, development, and stress protection. In the present review, we aimed to summarize data on how different polyphenol structures influence their biological activity and their roles in abiotic stress responses. We focused our review on phenolic acids, flavonoids, stilbenoids, and lignans.


2019 ◽  
Author(s):  
Mohan Singh Rajkumar ◽  
Rama Shankar ◽  
Rohini Garg ◽  
Mukesh Jain

AbstractDNA methylation is an epigenetic mark that controls gene expression in response to internal and environmental cues. In this study, we sought to understand the role of DNA methylation in response to desiccation and salinity stresses in three rice cultivars (IR64, stress-sensitive; Nagina 22, drought-tolerant and Pokkali, salinity-tolerant) via bisulphite sequencing. We identified DNA methylation patterns in different genomic/genic regions and analysed their correlation with gene expression. Methylation in CG context within gene body and methylation in CHH context in distal promoter regions were positively correlated with gene expression. However, methylation in other sequence contexts and genic regions was negatively correlated with gene expression. DNA methylation was found to be most dynamic in CHH context under stress condition(s) in the rice cultivars. The expression profiles of genes involved in de-novo methylation were correlated with methylation dynamics. Hypomethylation in Nagina 22 and hypermethylation in Pokkali in response to desiccation and salinity stress, respectively, were correlated with higher expression of abiotic stress response related genes. Our results suggest an important role of DNA methylation in abiotic stress responses in rice in cultivar-specific manner. This study provides useful resource of DNA methylomes that can be integrated with other data to understand abiotic stress response in rice.HighlightBisulphite sequencing revealed single base resolution DNA methylation, and cultivar-specific differential methylation patterns and correlation with gene expression that control desiccation and salinity stress response in the rice cultivars.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11403
Author(s):  
Kai Wang ◽  
Yating Cheng ◽  
Li Yi ◽  
Hailang He ◽  
Shaofeng Zhan ◽  
...  

Tubby-Like Proteins (TLPs) are important transcription factors with many functions and are found in both animals and plants. In plants, TLPs are thought to be involved in the abiotic stress response. To reveal the potential function of TLPs in the medicinal model plant Salvia miltiorrhiza, we identified 12 S. miltiorrhiza TLPs (SmTLPs) and conducted a comprehensive analysis. We examined SmTLP gene structure, protein structure, phylogenetics, and expression analysis. Our results show that all SmTLPs, except SmTLP11, have a complete typical Tub domain. Promoter analysis revealed that most SmTLPs are involved in hormone and abiotic stress responses. Expression analysis revealed that the 12 SmTLPs could be divided into three categories: those specifically expressed in roots, those specifically expressed in stems, and those specifically expressed in leaves. Additional studies have shown that SmTLP10 may play an important role in the plant cold resistance, while SmTLP12 may be involved in the S. miltiorrhiza ABA metabolic pathway. Our study represents the first comprehensive investigation of TLPs in S. miltiorrhiza. These data may provide useful clues for future studies and may support the hypotheses regarding the role of TLPs in plant abiotic stress process. All in all, we may provide a reference for improving S. miltiorrhiza quality using genetic engineering technology.


2020 ◽  
Vol 28 (S2) ◽  
Author(s):  
Fauziah Abu Bakar ◽  
Pavitra Paramalingam ◽  
Kamariah Hasan

Carica papaya is a well-liked and economically important fruit with outstanding nutritional and medicinal values. Its susceptibility to abiotic stress which affects the growth and harvest, causes significant yield loss to farmers. In recent years, significant progress has been made to understand the genes that play critical roles in abiotic stress response, especially some transcription factor (TF) encoding genes. Among all TFs, WRKY TF gene family is one of the best-studied TFs involved in various stress responses. To date, only limited information on functionally characterised WRKY TFs is available for C. papaya. The aim of this study was to produce a recombinant construct harbouring WRKY gene in pGEM®-T Easy cloning vector. The presence of a DNA band of the expected size of 465 bp on agarose gel electrophoresis indicated that WRKY gene was successfully amplified from all treated samples. DNA sequencing analysis revealed that the amplified sequence isolated from the treated samples were closely related to Carica papaya species with 97% similarity. Following transformation, 4 out of 5 colonies that were randomly selected showed the WRKY gene had been successfully inserted into pGEM®-T Easy vector and transformed into E. coli. In future, the WRKY gene from pGEMT-WRKY recombinant construct will be cloned into the plant expression vector pCAMBIA 1304 prior to transformation in the plant. The success of demonstrating the WRKY gene towards the response in abiotic stress will enable us to produce stress tolerant transgenic crops under unfavourable conditions via genetic engineering for sustained growth.


Author(s):  
Irene Garcia-Maquilon ◽  
Alberto Coego ◽  
Jorge Lozano-Juste ◽  
Maxim Messerer ◽  
Carlos de Ollas ◽  
...  

Abstract The identification of those prevalent abscisic acid (ABA) receptors and molecular mechanisms that trigger drought adaptation in crops well adapted to harsh conditions such as date palm (Phoenix dactylifera, Pd) sheds light on plant–environment interactions. We reveal that PdPYL8-like receptors are predominantly expressed under abiotic stress, with Pd27 being the most expressed receptor in date palm. Therefore, subfamily I PdPYL8-like receptors have been selected for ABA signaling during abiotic stress response in this crop. Biochemical characterization of PdPYL8-like and PdPYL1-like receptors revealed receptor- and ABA-dependent inhibition of PP2Cs, which triggers activation of the pRD29B-LUC reporter in response to ABA. PdPYLs efficiently abolish PP2C-mediated repression of ABA signaling, but loss of the Trp lock in the seed-specific AHG1-like phosphatase PdPP2C79 markedly impairs its inhibition by ABA receptors. Characterization of Arabidopsis transgenic plants that express PdPYLs shows enhanced ABA signaling in seed, root, and guard cells. Specifically, Pd27-overexpressing plants showed lower ABA content and were more efficient than the wild type in lowering transpiration at negative soil water potential, leading to enhanced drought tolerance. Finally, PdPYL8-like receptors accumulate after ABA treatment, which suggests that ABA-induced stabilization of these receptors operates in date palm for efficient boosting of ABA signaling in response to abiotic stress.


2020 ◽  
Vol 21 (12) ◽  
pp. 4548 ◽  
Author(s):  
Kwanuk Lee ◽  
Hunseung Kang

Organellar gene expression (OGE) in chloroplasts and mitochondria is primarily modulated at post-transcriptional levels, including RNA processing, intron splicing, RNA stability, editing, and translational control. Nucleus-encoded Chloroplast or Mitochondrial RNA-Binding Proteins (nCMRBPs) are key regulatory factors that are crucial for the fine-tuned regulation of post-transcriptional RNA metabolism in organelles. Although the functional roles of nCMRBPs have been studied in plants, their cellular and physiological functions remain largely unknown. Nevertheless, existing studies that have characterized the functions of nCMRBP families, such as chloroplast ribosome maturation and splicing domain (CRM) proteins, pentatricopeptide repeat (PPR) proteins, DEAD-Box RNA helicase (DBRH) proteins, and S1-domain containing proteins (SDPs), have begun to shed light on the role of nCMRBPs in plant growth, development, and stress responses. Here, we review the latest research developments regarding the functional roles of organellar RBPs in RNA metabolism during growth, development, and abiotic stress responses in plants.


Sign in / Sign up

Export Citation Format

Share Document