scholarly journals Cold Plasma Affects Germination and Fungal Community Structure of Buckwheat Seeds

Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 851
Author(s):  
Jure Mravlje ◽  
Marjana Regvar ◽  
Pia Starič ◽  
Miran Mozetič ◽  
Katarina Vogel-Mikuš

Crop seeds are frequently colonised by fungi from the field or storage places. Some fungi can cause plant diseases or produce mycotoxins, compromising the use of seeds as seeding material, food or feed. We have investigated the effects of cold plasma (CP) on seed germination and diversity of seed-borne fungi in common and Tartary buckwheat. The seeds were treated with CP for 15, 30, 45, 60, 90, and 120 s in a low-pressure radiofrequency system using oxygen as the feed gas. The fungi from the seed surface and fungal endophytes were isolated using potato dextrose agar plates. After identification by molecular methods, the frequency and diversity of fungal strains were compared between CP treated and chemically surface-sterilised (30% of H2O2) seeds. CP treatments above 60 s negatively affected the germination of both buckwheat species. A significant reduction in fungal frequency and diversity was observed after 90 s and 120 s in common and Tartary buckwheat, respectively. The filamentous fungi of genera Alternaria and Epicoccum proved to be the most resistant to CP. The results of our study indicate that CP treatment used in our study may be applicable in postharvest and food production, but not for further seed sowing.

2019 ◽  
pp. 316-326
Author(s):  
Zanib Al-Sadiq Al-bozidy ◽  
Najat Khalifa El-Gariani ◽  
Mohammed Alsaghir

Pisum sativum. L is one of the most important legumes and vegetables. It is an essential source of energy and highly rich in protein. Peas are affected by many plant diseases, Sclerotinia sclerotiorum, which affects many vegetable and field crops plants causing significant losses in agricultural production. S. sclerotiorum was isolated from infected pea pods on Potato Dextrose Agar (PDA) media. the percentage of seed germination was investigated for both local and Italian varities, also the effect of fungus on seeds and bodes was evaluated. Results of this study showed that the percentage of seed germination in the local varity was 98%, while in the Italian varity 90%. The ability of pathogenicity was high on seeds and bods of the local variety. and also the effect of S. sclerotiorum suspension when using perlite showed that the fungus hed a high effecte on the plant growth and seed germination comparied with sclerotia treatment on local variety only, while the effect of fungal suspension decreased seed and plant germination on petmous comparied with sclerotia treatment.


2021 ◽  
Vol 11 (11) ◽  
pp. 5297
Author(s):  
Stavros D. Veresoglou ◽  
Leonie Grünfeld ◽  
Magkdi Mola

The roots of most plants host diverse assemblages of arbuscular mycorrhizal fungi (AMF), which benefit the plant hosts in diverse ways. Even though we understand that such AMF assemblages are non-random, we do not fully appreciate whether and how environmental settings can make them more or less predictable in time and space. Here we present results from three controlled experiments, where we manipulated two environmental parameters, habitat connectance and habitat quality, to address the degree to which plant roots in archipelagos of high connectivity and invariable habitats are colonized with (i) less diverse and (ii) easier to predict AMF assemblages. We observed no differences in diversity across our manipulations. We show, however, that mixing habitats and varying connectivity render AMF assemblages less predictable, which we could only detect within and not between our experimental units. We also demonstrate that none of our manipulations favoured any specific AMF taxa. We present here evidence that the community structure of AMF is less responsive to spatio-temporal manipulations than root colonization rates which is a facet of the symbiosis which we currently poorly understand.


2021 ◽  
Vol 9 (5) ◽  
pp. 1050
Author(s):  
Jing Zhu ◽  
Xiang Sun ◽  
Zhi-Dong Zhang ◽  
Qi-Yong Tang ◽  
Mei-Ying Gu ◽  
...  

Endophytic bacteria and fungi colonize plants that grow in various types of terrestrial and aquatic ecosystems. Our study investigates the communities of endophytic bacteria and fungi of halophyte Kalidium schrenkianum growing in stressed habitats with ionizing radiation. The geochemical factors and radiation (at low, medium, high level and control) both affected the structure of endophytic communities. The bacterial class Actinobacteria and the fungal class Dothideomycetes predominated the endophytic communities of K. schrenkianum. Aerial tissues of K. schrenkianum had higher fungal diversity, while roots had higher bacterial diversity. Radiation had no significant effect on the abundance of bacterial classes. Soil pH, total nitrogen, and organic matter showed significant effects on the diversity of root endophytes. Radiation affected bacterial and fungal community structure in roots but not in aerial tissues, and had a strong effect on fungal co-occurrence networks. Overall, the genetic diversity of both endophytic bacteria and fungi was higher in radioactive environments, however negative correlations were found between endophytic bacteria and fungi in the plant. The genetic diversity of both endophytic bacteria and fungi was higher in radioactive environments. Our findings suggest that radiation affects root endophytes, and that the endophytes associated with aerial tissues and roots of K. schrenkianum follow different mechanisms for community assembly and different paradigms in stress response.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Martin Jemo ◽  
Driss Dhiba ◽  
Abeer Hashem ◽  
Elsayed Fathi Abd_Allah ◽  
Abdulaziz A. Alqarawi ◽  
...  

2018 ◽  
Vol 221 (1) ◽  
pp. 493-502 ◽  
Author(s):  
Adair Patterson ◽  
Lluvia Flores-Rentería ◽  
Amy Whipple ◽  
Thomas Whitham ◽  
Catherine Gehring

Agriculture ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1113
Author(s):  
Xiaolong Lin ◽  
Zongmu Yao ◽  
Xinguang Wang ◽  
Shangqi Xu ◽  
Chunjie Tian ◽  
...  

Rice is a staple food for the world’s population. However, the straw produced by rice cultivation is not used sufficiently. Returning rice straw to the field is an effective way to help reduce labor and protect the soil. This study focused on the effect of water-covered depth with the freeze–thaw cycle on rice straw decomposition and the soil fungal community structure in a field in Northeast China. The field and controlled experiments were designed, and the fungal ITS1 region was tested by high-throughput sequencing for analyzing the fungal communities in this study. The results showed that water coverage with the freeze–thaw cycle promoted the decomposition of rice straw and influenced the fungal community structure; by analyzing the network of the fungal communities, it was found that the potential keystone taxa were Penicillium, Talaromyces, Fusarium, and Aspergillus in straw decomposition; and the strains with high beta-glucosidase, carboxymethyl cellulase, laccase, lignin peroxidase, and manganese peroxidase could also be isolated in the treated experiment. Furthermore, plant pathogenic fungi were found to decrease in the water-covered treatment. We hope that our results can help in rice production and straw return in practice.


Sign in / Sign up

Export Citation Format

Share Document