scholarly journals The Effects of Cultivating Tobacco and Supplying Nitrogenous Fertilizers on Micronutrients Extractability in Loamy Sand and Sandy Soils

Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1597
Author(s):  
Jacob B. Lisuma ◽  
Ernest R. Mbega ◽  
Patrick A. Ndakidemi

This research was conducted to evaluate the trends of the extractable micronutrients boron (B), copper (Cu), iron (Fe), manganese (Mn), and zinc (Zn) in soils differing in textures and collected before tobacco cultivation, and in after unfertilized and fertilized (N10P18K24 and CAN 27%) plots. The soils and tobacco leaves were assessed on the contents of the micronutrients after unfertilized and fertilized tobacco cultivation. In soils, tobacco cultivation with fertilization increased the extractable Cu, Fe, Mn, and Zn by 0.10, 11.03, 8.86, and 0.08 mg kg−1, respectively, but decreased the extractable B by 0.04 mg kg−1. The effects of fertilization increased the extractable Cu, Fe, Mn, and Zn by 0.14, 14.29, 9.83, and 0.24 mg kg−1, respectively, but decreased B by 0.08 mg kg−1. The combination effects of tobacco cultivation and fertilization increased the extractable Cu, Fe, Mn, and Zn by 0.24, 25.32, 18.69, and 0.32 mg kg−1, respectively, but decreased the extractable B by 0.12 mg kg−1. The results revealed that the solubility of the extractable Zn, Mn, Cu, and Fe in soils were increased by both tobacco and fertilization, but the extractable B was decreased. The fertilization of the studied soils with NPK + CAN fertilizers significantly increased the concentration of the extractable micronutrients in tobacco leaves. Based on the findings of this study, further research must be conducted to investigate the effects of tobacco cultivation on soil health and fertility beyond considering only soil pH, SOC, micronutrients, and macronutrients. These studies should include the relationship between soil fertility (pH, texture, CEC, base saturation, etc.), micronutrients, and agronomic practices on the effect of tobacco cultivation on the extractability of B, Cu, Fe, Mn, and Zn.

2019 ◽  
Vol 8 (4) ◽  
pp. 61
Author(s):  
Nan Xu ◽  
Jehangir H. Bhadha ◽  
Abul Rabbany ◽  
Stewart Swanson

The addition of organic amendments and cover cropping on sandy soils are regenerative farming practices that can potentially enhance soil health. South Florida mineral soils present low soil quality due to their sandy texture and low organic matter (OM) content. Few studies have focused on evaluating the effects of farm-based management regenerative practices in this region. The objective of this study was to evaluate changes in soil properties associated with two regenerative farming practices - horse bedding application in combination with cover cropping (cowpea, Vigna unguiculata), compared to the practice of cover cropping only for two years. The soil quality indicators that were tested included soil pH, bulk density, water holding capacity, cation exchange capacity, OM, active carbon, soil protein and major nutrients (N, P, K). Results indicated no significant changes in soil pH, but a significant reduction in soil bulk density and a significant increase in maximum water holding capacity for both practices. Cation exchange capacity and the amounts of active carbon increased significantly after 1.5-year of the farming practices. Horse bedding application with cover cropping showed a significant 4% increase in OM during a short period. A significant increase in plant-available P was also observed under these two practices. Based on this study, horse bedding application as an organic amendment in conjunction with cover cropping provides an enhanced soil health effect compared to just cover cropping. As local growers explore farming option to improve soil health particularly during the fallow period using regenerative farming practices on sandy soils, these results will assist in their decision making.


Soil Systems ◽  
2018 ◽  
Vol 2 (4) ◽  
pp. 57 ◽  
Author(s):  
Sudarshan Kharal ◽  
Babu Khanal ◽  
Dinesh Panday

Unscientific land use and cropping techniques have led high soil erosion and degradation of soil quality in the mid-hills of Nepal. To understand the effects of land use systems for selected soil chemical properties in mid-hills, composite soil samples at 0 cm to 20 cm depth were collected from five different land-use systems: Grassland, forest land, upland, lowland, and vegetable farms from Dhading district of Nepal in 2017. Soil samples were analyzed for soil fertility parameters: Soil pH, organic matter (OM), total nitrogen (N), available phosphorus (P), available potassium (K) and its effect due to different land use systems were compared. Results showed that soil pH was neutral in vegetable farms (6.61), whereas the rest of the land-use systems had acidic soils. Soil OM (3.55%) and N (0.18%) content was significantly higher in forest, but the lowest soil OM (1.26%) and N (0.06%) contents were recorded from upland and lowland farms, respectively. Available P was the highest in the vegetable farm (41.07 mg kg−1) and was the lowest in grazing land (2.89 mg kg−1). The upland farm had significantly higher P levels (39.89 mg kg−1) than the lowland farm (9.02 mg kg−1). Available K was the highest in the vegetable farm (130.2 mg kg−1) and lowest in grazing land (36.8 mg kg−1). These results indicated that the land under traditional mixed cereal-based farming had poor soil health compared with adjacent vegetable, grazing, and forest lands among the study area. The variations in soil fertility parameters suggest the immediate need for improvement in soil health of traditional farmlands.


2020 ◽  
Vol 4 (2) ◽  
pp. 780-787
Author(s):  
Ibrahim Hassan Hayatu ◽  
Abdullahi Mohammed ◽  
Barroon Ahmad Isma’eel ◽  
Sahabi Yusuf Ali

Soil fertility determines a plant's development process that guarantees food sufficiency and the security of lives and properties through bumper harvests. The fertility of soil varies according to regions, thereby determining the type of crops to be planted. However, there is no repository or any source of information about the fertility of the soil in any region in Nigeria especially the Northwest of the country. The only available information is soil samples with their attributes which gives little or no information to the average farmer. This has affected crop yield in all the regions, more particularly the Northwest region, thus resulting in lower food production.  Therefore, this study is aimed at classifying soil data based on their fertility in the Northwest region of Nigeria using R programming. Data were obtained from the department of soil science from Ahmadu Bello University, Zaria. The data contain 400 soil samples containing 13 attributes. The relationship between soil attributes was observed based on the data. K-means clustering algorithm was employed in analyzing soil fertility clusters. Four clusters were identified with cluster 1 having the highest fertility, followed by 2 and the fertility decreases with an increasing number of clusters. The identification of the most fertile clusters will guide farmers on where best to concentrate on when planting their crops in order to improve productivity and crop yield.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 448
Author(s):  
Mahrous Awad ◽  
Zhongzhen Liu ◽  
Milan Skalicky ◽  
Eldessoky S. Dessoky ◽  
Marian Brestic ◽  
...  

Heavy metals (HMs) toxicity represents a global problem depending on the soil environment’s geochemical forms. Biochar addition safely reduces HMs mobile forms, thus, reducing their toxicity to plants. While several studies have shown that biochar could significantly stabilize HMs in contaminated soils, the study of the relationship of soil properties to potential mechanisms still needs further clarification; hence the importance of assessing a naturally contaminated soil amended, in this case with Paulownia biochar (PB) and Bamboo biochar (BB) to fractionate Pb, Cd, Zn, and Cu using short sequential fractionation plans. The relationship of soil pH and organic matter and its effect on the redistribution of these metals were estimated. The results indicated that the acid-soluble metals decreased while the fraction bound to organic matter increased compared to untreated pots. The increase in the organic matter metal-bound was mostly at the expense of the decrease in the acid extractable and Fe/Mn bound ones. The highest application of PB increased the organically bound fraction of Pb, Cd, Zn, and Cu (62, 61, 34, and 61%, respectively), while the BB increased them (61, 49, 42, and 22%, respectively) over the control. Meanwhile, Fe/Mn oxides bound represents the large portion associated with zinc and copper. Concerning soil organic matter (SOM) and soil pH, as potential tools to reduce the risk of the target metals, a significant positive correlation was observed with acid-soluble extractable metal, while a negative correlation was obtained with organic matter-bound metal. The principal component analysis (PCA) shows that the total variance represents 89.7% for the TCPL-extractable and HMs forms and their relation to pH and SOM, which confirms the positive effect of the pH and SOM under PB and BB treatments on reducing the risk of the studied metals. The mobility and bioavailability of these metals and their geochemical forms widely varied according to pH, soil organic matter, biochar types, and application rates. As an environmentally friendly and economical material, biochar emphasizes its importance as a tool that makes the soil more suitable for safe cultivation in the short term and its long-term sustainability. This study proves that it reduces the mobility of HMs, their environmental risks and contributes to food safety. It also confirms that performing more controlled experiments, such as a pot, is a disciplined and effective way to assess the suitability of different types of biochar as soil modifications to restore HMs contaminated soil via controlling the mobilization of these minerals.


2021 ◽  
Vol 13 (11) ◽  
pp. 6221
Author(s):  
Muyuan Ma ◽  
Yaojun Zhu ◽  
Yuanyun Wei ◽  
Nana Zhao

To predict the consequences of environmental change on the biodiversity of alpine wetlands, it is necessary to understand the relationship between soil properties and vegetation biodiversity. In this study, we investigated spatial patterns of aboveground vegetation biomass, cover, species diversity, and their relationships with soil properties in the alpine wetlands of the Gannan Tibetan Autonomous Prefecture of on the Qinghai-Tibetan Plateau, China. Furthermore, the relative contribution of soil properties to vegetation biomass, cover, and species diversity were compared using principal component analysis and multiple regression analysis. Generally, the relationship between plant biomass, coverage, diversity, and soil nutrients was linear or unimodal. Soil pH, bulk density and organic carbon were also significantly correlated to plant diversity. The soil attributes differed in their relative contribution to changes in plant productivity and diversity. pH had the highest contribution to vegetation biomass and species richness, while total nitrogen was the highest contributor to vegetation cover and nitrogen–phosphorus ratio (N:P) was the highest contributor to diversity. Both vegetation productivity and diversity were closely related to soil properties, and soil pH and the N:P ratio play particularly important roles in wetland vegetation biomass, cover, and diversity.


2015 ◽  
Vol 12 (2) ◽  
pp. 34-38 ◽  
Author(s):  
Ashim Kumar Saha ◽  
Apu Biswas ◽  
Abdul Qayyum Khan ◽  
Md. Mohashin Farazi ◽  
Md. Habibur Rahman

Long-term tea cultivation has led to degradation of the soil. Old tea soils require rehabilitation for restoring soil health. Soil rehabilitation by growing different green crops can break the chain of monoculture of tea. An experiment was conducted at The Bangladesh Tea Research Institute (BTRI) Farm during 2008-2011 to find out the efficiency of different green crops on the improvement of soil properties. Four green crops such as Guatemala, Citronella, Mimosa and Calopogonium were grown to develop the nutritional value of the degraded tea soil. Soil samples were collected and analyzed before and at the end of experiment. Soil pH was increased in all four green crops treated plots with the highest increase in Citronella treated plots (from 4.1 to 4.5). Highest content of organic carbon (1.19%) and total nitrogen (0.119%) were found in Mimosa and Calopogonium treated plots, respectively. Concentration of available phosphorus, calcium and magnesium in all green crops treated plots were above the critical values, while available potassium content was above the critical value in Guatemala, Citronella and Mimosa treated plots. Changes in soil pH and available potassium were significant, while changes in organic carbon content, total nitrogen and available calcium were insignificant. Changes in available phosphorus and magnesium were significant. The Agriculturists 2014; 12(2) 34-38


Perspektif ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 61
Author(s):  
Djajadi Djajadi

<p class="Default">ABSTRACT</p><p class="Default">Organik matter has an important role in determining soil health of sugarcane, i.e. soil capacity to support sugarcane to produce sustainable high yield. Soil organic matter influences soil physical, chemical, and biological properties, so that a consequence of declining soil organic matter is poorer soil fertility and lower yield. This paper has an objective to elucidate the important role of organic matter on sustainable farming of sugarcane. The important role of organic matter in soil fertility has been known for a long time before Green Revolution concept was introduced. With more intensity in sugarcane farming and more increasing of sugar demand, application of organic fertilizer started to be substituted by chemical fertilizer. Using green manure and/or biofertilizer has a chance to be spread out to the farmers due to more practical and more efficient than solid organik fertilizer, such as dung manure or compost. Future research should be focusing on the efectivity of green manure and or biofertilzer sources in improving soil fertility and cane yield, minimizing soil pathogen, reducing soil erosion of sugar cane land monoculture, and improving awareness of farmers about soil degradation as consequences of sugarcane monoculture planting for years.</p><p class="Default">Keywords: Organic matter, sugarcane, soil health sustainable farming</p><p class="Default"> </p><p class="Default"><strong>Bahan Organik: Peranannya dalam Budidaya Tebu Berkelanjutan</strong></p><p class="Default">ABSTRAK</p><p class="Default">Bahan organik tanah berperan penting dalam menentukan kesehatan tanah tebu, yaitu kapasitas tanah yang dapat mendukung produksi tebu yang tinggi secara berkelanjutan. Kadar bahan organik tanah mempengaruhi sifat fisik, kimia dan biologi tanah. Paper ini bertujuan untuk menguraikan tentang peranan bahan organik dalam memperbaiki sifat fisik, kimia dan biologi tanah pertanaman tebu. Pentingnya peran bahan oganik tersebut sudah disadari dari dulu, sehingga sebelum revolusi hijau penggunaan pupuk organik sudah umum dilakukan petani. Dengan semakin intensifnya budidaya tebu dan semakin meningkatnya kebutuhan gula, pemanfaatan pupuk organik sudah jarang dilakukan. Diperlukan usaha untuk meningkatkan dan mempertahankan kadar bahan organik pada lahan tebu, antara lain berupa gerakan masal dalam bentuk gerakan nasional melalui program aplikasi bahan organik. Pemanfaatan pupuk hijau dan/atau pupuk hayati berpeluang untuk diterapkan karena lebih praktis dan efisien daripada penambahan pupuk organik padat. Penelitian ke depan perlu difokuskan untuk mengkaji jenis-jenis pupuk organik dan pupuk hayati yang efektif memperbaiki kesuburan, dalam menekan serangan penyakit, meminimalkan erosi pada lahan-lahan tebu monokultur, dan meningkatkan kesadaran petani tebu tentang terjadinya degradasi lahan akibat penanaman tebu yang terus menerus.</p><p class="Default">Kata kunci: Bahan organik, tebu, kesehatan tanah, budidaya berkelanjutan</p><p class="Default"> </p>


2020 ◽  
Vol 7 ◽  
pp. 43-53
Author(s):  
Bishal Gnyawali ◽  
Umesh Kumar Mandal ◽  
Ishwor Aryal

Soil fertility assessment is a very fundamental task for farmers and agricultural planners to adopt appropriate fertility management practices, to recommend applying lacking fertilizers, to make fertility-based agricultural plans,s and to produce a large number of crops in their land. This study assesses the soil fertility status of Sainamaina Municipality, ward no. 5-9, Rupandehi district based on soil sample data collected from the field. Soil test based fertility assessment, calculation of overall fertility of area using fertility index, and preparation of soil fertility map is carried out. As soil fertility, the status of total nitrogen (TN), phosphorus (P2 O5), potassium (K), organic matter (OM), and soil pH are measured. As a result, the status of TN, (K2 O), and OM is found low, the status of (P2 O5 ) is found high and soil pH is found in range of very strongly acidic to slightly alkaline.


Sign in / Sign up

Export Citation Format

Share Document