scholarly journals Predicting the Bioclimatic Habitat Suitability of Ginkgo biloba L. in China with Field-Test Validations

Forests ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 705 ◽  
Author(s):  
Ying Guo ◽  
Jing Guo ◽  
Xin Shen ◽  
Guibin Wang ◽  
Tongli Wang

Ginkgo (Ginkgo biloba L.) is not only considered a ‘living fossil’, but also has important ecological, economic, and medicinal values. However, the impact of climate change on the performance and distribution of this plant is an increasing concern. In this study, we developed a bioclimatic model based on data about the occurrence of ginkgo from 277 locations, and validated model predictions using a wide-ranging field test (12 test sites, located at the areas from 22.49° N to 39.32° N, and 81.11° E to 123.53° E). We found that the degree-days below zero were the most important climate variable determining ginkgo distribution. Based on the model predictions, we classified the habitat suitability for ginkgo into four categories (high, medium, low, and unsuitable), accounting for 9.29%, 6.09%, 8.46%, and 76.16% of China’s land area, respectively. The ANOVA results of the validation test showed significant differences in observed leaf-traits among the four habitat types (p < 0.05), and importantly the rankings of the leaf traits were consistent with our classification of the habitat suitability, suggesting the effectiveness of our classification in terms of biological and economic significance. In addition, we projected that suitable (high and medium) habitats for ginkgo would shrink and shift northward under both the RCP4.5 and RCP8.5 climate change scenarios for three future periods (the 2020s, 2050s, and 2080s). However, the area of low-suitable habitat would increase, resulting in a slight decrease in unsuitable habitats. Our findings contribute to a better understanding of climate change impact on this plant and provide a scientific basis for developing adaptive strategies for future climate.

2022 ◽  
Author(s):  
Babar Zahoor ◽  
Xuehua Liu ◽  
Melissa Songer

Abstract Global temperatures are predicted to rise from between 1.4 to 5.8°C by 21st century, which could result in a 20 to 30% extinction of species. The negative impacts of climate change on the northern highlands of Pakistan (NHP) could change the species composition. Range shifts and range reduction in the forested landscapes will dramatically affect the distribution of forest dwelling species, including the Galliformes (ground birds). Three Galliformes (e.g., Lophophorus impejanus, Pucrasia macrolopha and Tragopan melanocephalus) are indicator species of the environment and currently distributed in NHP. For this study, we used Maximum Entropy Model (MaxEnt) to simulate the current and future (in 2050 and 2070) distributions of the species using three General Circulation Models (GCMs) and two climate change scenarios, i.e., RCP4.5 (moderate carbon emission scenario) and RCP8.5 (peak carbon emission scenario). Our results indicated that (i) all the three species would be negatively affected by the climate change in 2050 and in 2070. (ii) Under all three climate scenarios, species distribution was predicted to both reduce and shift towards higher altitudes. (iii) Across the provinces in the NHP, the species were predicted to lose over one quarter in 2050 and one-third by 2070 of the current suitable habitat. (iv) The maximum area of climate refugia was projected between the altitudinal range of 2000 m to 4000 m and predicted to shift towards higher altitudes primarily >3000 m in the future. The proposed implications such as establishment and upgradation of the protected areas, ban on hunting, timber mafia and temporary settlements of the local people in the forested landscapes should be under special consideration to mitigate the impact of climate change.


Insects ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 443
Author(s):  
Jesse A. Tabor ◽  
Jonathan B. Koch

Climate change is predicted to increase the risk of biological invasions by increasing the availability of climatically suitable regions for invasive species. Endemic species on oceanic islands are particularly sensitive to the impact of invasive species due to increased competition for shared resources and disease spread. In our study, we used an ensemble of species distribution models (SDM) to predict habitat suitability for invasive bees under current and future climate scenarios in Hawai’i. SDMs projected on the invasive range were better predicted by georeferenced records from the invasive range in comparison to invasive SDMs predicted by records from the native range. SDMs estimated that climatically suitable regions for the eight invasive bees explored in this study will expand by ~934.8% (±3.4% SE). Hotspots for the invasive bees are predicted to expand toward higher elevation regions, although suitable habitat is expected to only progress up to 500 m in elevation in 2070. Given our results, it is unlikely that invasive bees will interact directly with endemic bees found at >500 m in elevation in the future. Management and conservation plans for endemic bees may be improved by understanding how climate change may exacerbate negative interactions between invasive and endemic bee species.


2020 ◽  
Author(s):  
Dol Raj Luitel ◽  
Mohan Siwakoti ◽  
Mohan D. Joshi ◽  
Muniappan Rangaswami ◽  
Pramod K. Jha

Abstract Abstract Background: Finger millet is the fourth major crop in Nepal and is cultivated in a traditional integrated subsistence system. Timely rain and appropriate temperature predominately affects crop distribution and yield. Climate change is evident in Nepal and it is imperative to understand how it affects habitat suitability of finger millet. Main objective of this study was to map the current suitable habitat and predicting the potential changes in the future under different climate scenarios in Nepal. Habitat mapping is important for maximizing production and minimizing the loss of local landraces. Results: Maxent model was used in this study to quantify the current suitable habitat and changes in the future habitat suitability of finger millet, based on representative concentration pathways (RCP)(RCP 2.6, 4.5, 6.0 and 8.5) in two different time periods (2050 and 2070AD) using climatic predictive variables and species localities. The model shows that 39.7% (58512.71km2) area of Nepal is highly suitable for finger millet, with cultivation mostly between 96-2300m above sea level. Eastern and central parts of Nepal have more suitable areas than western parts. Our research clearly shows that the future climatic suitable area of finger millet would shrink by 4.3 to 8.9% in 2050 and 8.9-10.5% under different RCPs by 2070. Conclusion: Finger millet is mostly cultivated in mid-hill terraces. The substantial increase in temperature due to climate change may be one reason for decrease in habitat suitability of finger millet. This situation would further threat loss of local landraces of finger millet in the future. The findings can help in planning and policy framing for climate resilient smart agriculture practice. Key words: Climate change, finger millet, habitat suitability, Maxent model


2019 ◽  
Author(s):  
Dol Raj Luitel ◽  
Mohan Siwakoti ◽  
Mohan D. Joshi ◽  
Muniappan Rangaswami ◽  
Pramod K. Jha

Abstract Background: Finger millet is the fourth major crop in Nepal and is cultivated in a traditional integrated subsistence system. Timely rain and appropriate temperature predominately affects crop distribution and yield. Climate change is evident in Nepal and it is imperative to understand how it affects habitat suitability of finger millet. Mapping the current suitable habitat and predicting the potential changes in the future is important for maximizing production and minimizing the loss of local landraces. Results: Maxent model was used in this study to quantify the current suitable habitat and changes in the future habitat suitability of finger millet under different climate scenarios, based on representative concentration pathways (RCP)(RCP 2.6, 4.5, 6.0 and 8.5) in two different time periods (2050 and 2070AD) using climatic predictive variables and species localities. The model shows that 39.7% (58512.71km 2 ) area of Nepal is highly suitable for finger millet, with cultivation mostly between 96-2300m above sea level. Eastern and central parts of Nepal have more suitable areas than western parts. Our research clearly shows that the future climatic suitable area of finger millet would shrink by 4.3 to 8.9% in 2050 and 8.9-10.5%under different RCPs by 2070. Conclusion: Finger millet is mostly cultivated in mid-hill terraces. The substantial increase in temperature due to climate change may be one reason for decrease in habitat suitability of finger millet. This situation would further threat loss of local landraces of finger millet in the future. The findings can help in planning and policy framing for climate resilient smart agriculture practice. Key words : Climate change, finger millet, habitat suitability, Maxent model


Author(s):  
Yuan Gao ◽  
Zhibin He ◽  
Xi Zhu ◽  
Longfei Chen ◽  
Jun Du ◽  
...  

The Qinghai-Tibet Plateau in China is a region strongly impacted by climate change, yet its effects are unknown on the keystone endemic forest species, P. crassifolia. Understanding changes in potential distribution and habitat suitability of P. crassifolia forest with the climate change will contribute to water conservation, forest management, and ecological protection in the upper reaches of the Yellow River. A total of 129 records of species distribution data and 19 environmental variables were chosen for modeling. The MaxEnt model was used to analyze the main environmental factors affecting the potential distribution of P. crassifolia in two periods (2050s and 2070s) and four representative emission pathways (RCP2.6, RCP4.5, RCP6.0 and RCP 8.5). The main results are follows: (1) the most important environmental variables affecting distribution of P. crassifolia and percentage variance explained were: altitude (41.85%), precipitation of driest month (19.76%), slope (12.35%), annual precipitation (6.56%), precipitation of wettest month (5.73%), and precipitation of warmest quarter (5.12%), (2) habitat suitability of P. crassifolia shifted to the northwest and into high-altitude areas under climate change scenarios, but its core distribution areas were concentrated in northeastern Qinghai-Tibet Plateau, Qilian Mountains, southern Ningxia, and Helan Mountains, (3) total area of potential suitable habitat of P. crassifolia will change significantly in the future, and change of habitat area of not suitable, low, moderate, and high suitability exceed 60%.


2017 ◽  
Vol 147 (2) ◽  
Author(s):  
Sayyed Saeed Hosseinian Yousefkhani ◽  
Mansour Aliabadian ◽  
Eskandar Rastegar-Pouyani ◽  
Jamshid Darvish

Species distribution modeling is an important tool that uses ecological data to aid in biological conservation. In the present study we used prediction methods, including maximum entropy (Maxent), to project the distribution of the Persian Spider gecko and the impact of climate change on its distribution in Iran. The results were consistent between models and indicated that two of the most important variables in determining distribution of Agamura persica are mean temperature of the wettest quarter and temperature seasonality. All of the models used in this study obtained high area-under-the-curve (AUC) values. Because of the nocturnal behavior of the species, these variables can directly affect species’ activity by determining the vegetation type in habitat. Suitable habitats of Agamura persica were in two locations in eastern Iran and a third location in the central plateau. Habitat suitability for this species was increased in the last glacial maximum (LGM), at which time most parts of the Iranian Plateau were suitable (even southwest Iran). However, the suitable habitat area is restricted to the central part of the plateau in the current period. Predictions from four scenarios indicate that future habitat suitability will be patchy and that the central part of the plateau will remain the most important part of the species distribution.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nikolai Fedorov ◽  
Aliya Kutueva ◽  
Albert Muldashev ◽  
Oksana Mikhaylenko ◽  
Vasiliy Martynenko ◽  
...  

AbstractThe paper presents the results of predictions of the habitat persistence for rare relict of the Pleistocene floristic complex Patrinia sibirica (L.) Juss. in the Southern Urals under various forecasted climate change scenarios. Climate variables from CHELSA BIOCLIM, elevation data (GMTED2010) and coarse fragment content in the top level of soil were used as predictors for modeling in the MaxEnt software. The impact of climate change on P. sibirica habitats under the RCP4.5 and RCP8.5 scenarios calculated from an ensemble of four general circulation models has been analyzed. The modeling has shown that the changes in the habitat suitability depend on the altitude. Deterioration of the habitats could be attributed to a temperature increase in mountain forest locations, and to a precipitation of driest quarter increase in mountain forest-steppe locations. In both cases, this leads to the expansion of forest and shrub vegetation. Monitoring of the habitat persistence of P. sibirica and other relict species of the Pleistocene floristic complex can play a major role in predictions, as their massive decline would constitute that climatic changes exceed the ranges of their fluctuations in the Holocene.


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3508
Author(s):  
Vytautas Akstinas ◽  
Tomas Virbickas ◽  
Jūratė Kriaučiūnienė ◽  
Diana Šarauskienė ◽  
Darius Jakimavičius ◽  
...  

Aquatic ecosystems are particularly vulnerable to anthropogenic activity and climate change. The changes in flow regimes in Lithuanian lowland rivers due to the operation of hydropower plants (HPPs) and the impact of altered flow on some fish species have already been studied. The impact of climate change on future natural river runoff and the structure of fish assemblages was also investigated. However, it is still unknown how the combined effect of climate change and flow regulation related to hydropower generation may affect fish assemblages in the downstream river reaches below the Lithuanian HPPs. In this study, the physical habitat modelling system MesoHABSIM was used to simulate spatial and temporal changes in aquatic habitats availability for different fish species under the influence of HPP at different climate change scenarios. Changes in the available habitat were assessed for common fish species in four HPP-affected rivers representing different hydrological regions of Lithuania. The modelling results showed that the operation of HPP under climate change conditions in most rivers could be beneficial for small benthic fish species such as gudgeon Gobio gobio and stone loach Barbatula barbatula. Meanwhile, for larger fish species (e.g., chub Squalius cephalus and vimba Vimba vimba) the alteration in the temporal availability of suitable habitat was relatively higher.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 84
Author(s):  
Huanchu Liu ◽  
Hans Jacquemyn ◽  
Xingyuan He ◽  
Wei Chen ◽  
Yanqing Huang ◽  
...  

Human pressure on the environment and climate change are two important factors contributing to species decline and overall loss of biodiversity. Orchids may be particularly vulnerable to human-induced losses of habitat and the pervasive impact of global climate change. In this study, we simulated the extent of the suitable habitat of three species of the terrestrial orchid genus Cypripedium in northeast China and assessed the impact of human pressure and climate change on the future distribution of these species. Cypripedium represents a genus of long-lived terrestrial orchids that contains several species with great ornamental value. Severe habitat destruction and overcollection have led to major population declines in recent decades. Our results showed that at present the most suitable habitats of the three species can be found in Da Xing’an Ling, Xiao Xing’an Ling and in the Changbai Mountains. Human activity was predicted to have the largest impact on species distributions in the Changbai Mountains. In addition, climate change was predicted to lead to a shift in distribution towards higher elevations and to an increased fragmentation of suitable habitats of the three investigated Cypripedium species in the study area. These results will be valuable for decision makers to identify areas that are likely to maintain viable Cypripedium populations in the future and to develop conservation strategies to protect the remaining populations of these enigmatic orchid species.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Nabaz R. Khwarahm

Abstract Background The oak tree (Quercus aegilops) comprises ~ 70% of the oak forests in the Kurdistan Region of Iraq (KRI). Besides its ecological importance as the residence for various endemic and migratory species, Q. aegilops forest also has socio-economic values—for example, as fodder for livestock, building material, medicine, charcoal, and firewood. In the KRI, Q. aegilops has been degrading due to anthropogenic threats (e.g., shifting cultivation, land use/land cover changes, civil war, and inadequate forest management policy) and these threats could increase as climate changes. In the KRI and Iraq as a whole, information on current and potential future geographical distributions of Q. aegilops is minimal or not existent. The objectives of this study were to (i) predict the current and future habitat suitability distributions of the species in relation to environmental variables and future climate change scenarios (Representative Concentration Pathway (RCP) 2.6 2070 and RCP8.5 2070); and (ii) determine the most important environmental variables controlling the distribution of the species in the KRI. The objectives were achieved by using the MaxEnt (maximum entropy) algorithm, available records of Q. aegilops, and environmental variables. Results The model demonstrated that, under the RCP2.6 2070 and RCP8.5 2070 climate change scenarios, the distribution ranges of Q. aegilops would be reduced by 3.6% (1849.7 km2) and 3.16% (1627.1 km2), respectively. By contrast, the species ranges would expand by 1.5% (777.0 km2) and 1.7% (848.0 km2), respectively. The distribution of the species was mainly controlled by annual precipitation. Under future climate change scenarios, the centroid of the distribution would shift toward higher altitudes. Conclusions The results suggest (i) a significant suitable habitat range of the species will be lost in the KRI due to climate change by 2070 and (ii) the preference of the species for cooler areas (high altitude) with high annual precipitation. Conservation actions should focus on the mountainous areas (e.g., by establishment of national parks and protected areas) of the KRI as climate changes. These findings provide useful benchmarking guidance for the future investigation of the ecology of the oak forest, and the categorical current and potential habitat suitability maps can effectively be used to improve biodiversity conservation plans and management actions in the KRI and Iraq as a whole.


Sign in / Sign up

Export Citation Format

Share Document