scholarly journals Cloning Coconut via Somatic Embryogenesis: A Review of the Current Status and Future Prospects

Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2050
Author(s):  
Sundaravelpandian Kalaipandian ◽  
Zhihua Mu ◽  
Eveline Yee Yan Kong ◽  
Julianne Biddle ◽  
Robyn Cave ◽  
...  

Coconut [Cocos nucifera L.] is often called “the tree of life” because of its many uses in the food, beverage, medicinal, and cosmetic industries. Currently, more than 50% of the palms grown throughout the world are senile and need to be replanted immediately to ensure production levels meet the present and increasing demand for coconut products. Mass replanting will not be possible using traditional propagation methods from seed. Recent studies have indicated that in vitro cloning via somatic embryogenesis is the most promising alternative for the large-scale production of new coconut palms. This paper provides a review on the status and prospects for the application of somatic embryogenesis to mass clonal propagation of coconut.

Author(s):  
Marcia Santos de Freitas Lira ◽  
Simone Da Silva ◽  
Fábio Leandro Calderaro ◽  
Jandecy Cabral Leite

Simaba cedron, popularly known as "cedron", is largely used for fever and snake bites. Its seeds are used in the treatment of stomach problems and liver infections. The fruits are used for the treatment of pain and malaria while its bark is an antispasmodic. Simaba cedron is generally propagated through seeds, but with limited success, as the low viability of same restricts its propagation. In view of such difficulty, it becomes necessary the study for adequate conditions for the large scale production of these seedlings. Being it known that in several species, the use of micropropagation has made it possible to obtain a large amount of disease-free and more homogeneous seedlings, in reduced time and physical space, in comparison with conventional propagation methods, the objective of this work was to analyze the effect of two culture media on the production of aseptic parent plants as a first step in the development of a micropropagation protocol for Simaba cedron. The seeds were collected from a matrix plant located in the Amazon Biotechnology Center (CBA), in Manaus/AM. The experiment was installed at the Vegetable Tissue Culture Laboratory, where the  explants were desinfected and grown in culture medium  according to Murashige & Skoog (MS) and in Wood Plant Medium (WPM), during 60 days. The disinfestation rate obtained was 75% and, of the disinfested seeds, 100% germinated. The cultivation medium that was more favorable to the cultivation of simaba was the MS, where the multiplication rate was of 8.0: 1, whose seedlings reached, in average, 4.8 cm and 75% of rooting.


2012 ◽  
Vol 60 (5) ◽  
pp. 396 ◽  
Author(s):  
Andrea Kodym ◽  
Eva M. Temsch ◽  
Eric Bunn ◽  
John Delpratt

We report on the development of a somatic embryogenesis system for Lepidosperma concavum R.Br. and L. laterale R.Br. and the determination of ploidy stability of plants derived from somatic embryos. These keystone Lepidosperma species cannot currently be returned to restoration sites because of propagation difficulties (i.e. seed dormancy, low seed fill and recalcitrance to vegetative propagation). Three explant types (in vitro-germinated seedlings, immature seed and immature inflorescences) were used for the assessment of callus production potential. Embryogenic callus was induced and multiplied on 1/2MS medium with 2,4-D either alone, or in combination with zeatin. Over 90% of seedling explants of L. laterale produced regenerative calli after 6 weeks and 53% of seedling explants of L. concavum produced calli after 16 weeks on media containing 2,4-D and zeatin. Inflorescence material appeared to be least responsive. High rates of conversion to plants were achieved on medium containing activated charcoal, followed by thidiazuron medium. Acclimatisation success of plants ranged from 86% to 95%. Acclimatised plants grew vigorously under standard nursery conditions. The DNA ploidy level of 486 somatic embryogenesis-derived plantlets was analysed by flow cytometry. Only one plant (=0.2% of all plantlets tested) was found mixoploid. All other plants showed a stable ploidy level and stable C-values within the species. There was a small but significant C-value difference between the two Lepidosperma species. Five variegated plants (=0.3%) were observed among a total of ~1600 plants acclimatised. The application of tissue culture techniques such as somatic embryogenesis brings large-scale production of Lepidosperma plants for revegetation and horticultural purposes closer to commercial feasibility.


1984 ◽  
Vol 3 (6) ◽  
pp. 222-225 ◽  
Author(s):  
P. K. Gupta ◽  
S. V. Kendurkar ◽  
V. M. Kulkarni ◽  
M. V. Shirgurkar ◽  
A. F. Mascarenhas

2017 ◽  
Vol 10 (1) ◽  
pp. 46-54 ◽  
Author(s):  
H.D.D. Bandupriya ◽  
W.W.M.A. Iroshini ◽  
S A C N Perera ◽  
V.R.M. Vidhanaarachchi ◽  
S.C. Fernando ◽  
...  

Background: In vitro culture techniques provide an excellent platform for the multiplication of recalcitrant species such as coconut and thereby increase the homogeneity of the plantations. Clonal fidelity is one of the most important pre-requisites in a micropropagation protocol of crop species especially those with long life spans. Objective: The present study was conducted in order to determine the genetic homogeneity of coconut plantlets derived from unfertilized ovaries through somatic embryogenesis. Method: Twenty randomly selected plantlets at acclimatization stage, from two mother palms were subjected to Simple Sequence Repeats analysis. Thirteen highly polymorphic microsatellite primers were used for the detection of genetic fidelity in the clonal plantlets and their respective parent. Results: These plantlets showed no apparent differences among themselves and were comparable with the respective mother palm in the Simple Sequence Repeats analysis. The results obtained from this study suggest that there is no somaclonal variation or genetic instability occurring in plantlets that are regenerated from ovary explants. Conclusion: The absence of any sign of somaclonal variation suggests that somatic embryogenesis protocol did not induce the changes in gene structure, which had remained stable throughout the period that had been maintained in vitro. Determination of genetic fidelity of in vitro plants proved the suitability of regeneration protocol for large scale micropropagation applications for coconut.


2021 ◽  
Vol 06 ◽  
Author(s):  
Ayekpam Chandralekha Devi ◽  
G. K. Hamsavi ◽  
Simran Sahota ◽  
Rochak Mittal ◽  
Hrishikesh A. Tavanandi ◽  
...  

Abstract: Algae (both micro and macro) have gained huge attention in the recent past for their high commercial value products. They are the source of various biomolecules of commercial applications ranging from nutraceuticals to fuels. Phycobiliproteins are one such high value low volume compounds which are mainly obtained from micro and macro algae. In order to tap the bioresource, a significant amount of work has been carried out for large scale production of algal biomass. However, work on downstream processing aspects of phycobiliproteins (PBPs) from algae is scarce, especially in case of macroalgae. There are several difficulties in cell wall disruption of both micro and macro algae because of their cell wall structure and compositions. At the same time, there are several challenges in the purification of phycobiliproteins. The current review article focuses on the recent developments in downstream processing of phycobiliproteins (mainly phycocyanins and phycoerythrins) from micro and macroalgae. The current status, the recent advancements and potential technologies (that are under development) are summarised in this review article besides providing future directions for the present research area.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1288
Author(s):  
Wendy Dong ◽  
Boris Kantor

CRISPR/Cas technology has revolutionized the fields of the genome- and epigenome-editing by supplying unparalleled control over genomic sequences and expression. Lentiviral vector (LV) systems are one of the main delivery vehicles for the CRISPR/Cas systems due to (i) its ability to carry bulky and complex transgenes and (ii) sustain robust and long-term expression in a broad range of dividing and non-dividing cells in vitro and in vivo. It is thus reasonable that substantial effort has been allocated towards the development of the improved and optimized LV systems for effective and accurate gene-to-cell transfer of CRISPR/Cas tools. The main effort on that end has been put towards the improvement and optimization of the vector’s expression, development of integrase-deficient lentiviral vector (IDLV), aiming to minimize the risk of oncogenicity, toxicity, and pathogenicity, and enhancing manufacturing protocols for clinical applications required large-scale production. In this review, we will devote attention to (i) the basic biology of lentiviruses, and (ii) recent advances in the development of safer and more efficient CRISPR/Cas vector systems towards their use in preclinical and clinical applications. In addition, we will discuss in detail the recent progress in the repurposing of CRISPR/Cas systems related to base-editing and prime-editing applications.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Xuan Guan ◽  
David L Mack ◽  
Claudia M Moreno ◽  
Fernando Santana ◽  
Charles E Murry ◽  
...  

Introduction: Human somatic cells can be reprogrammed into primitive stem cells, termed induced pluripotent stem cells (iPSCs). These iPSCs can be extensively expanded in vitro and differentiated into multiple functional cell types, enabling faithful preservation of individual’s genotype and large scale production of disease targeted cellular components. These unique cellular reagents thus hold tremendous potential in disease mechanism study, drugs screening and cell replacement therapy. Due to the genetic mutation of the protein dystrophin, many DMD patients develop fatal cardiomyopathy with no effective treatment. The underlying pathogenesis has not been fully elucidated. Hypothesis: We tested the hypothesis that iPSCs could be generated from DMD patients’ urine samples and differentiated into cardiomyocytes, recapitulating the dystrophic phenotype. Methods: iPSCs generation was achieved by introducing a lentiviral vector expressing Oct4, Sox2, c-Myc and Klf4 into cells derived from patient’s (n=1) and healthy volunteers’ (n=3) urine. Cardiomyocytes were derived by sequentially treating iPSCs with GSK3 inhibitor CHIR99021 and Wnt inhibitor IWP4. Differentiated cardiomyocytes were subjected to calcium imaging, electrophysiology recording, Polymerase Chain Reaction (PCR) analysis, and immunostaining. Results: iPSCs were efficiently generated from human urine samples and further forced to differentiate into contracting cardiomyocytes. PCR analysis and immunostaining confirmed the expression of a panel of cardiac markers. Both normal and patient iPSC derived cardiomyocytes exhibited spontaneous and field stimulated calcium transients (up to 2Hz), as well as action potentials with ventricular-like and nodal-like characteristics. Anti-dystrophin antibodies stained normal iPSC-derived cardiomyocyte membranes but did not react against DMD iPSC-derived cardiomyocytes. Conclusions: Cardiomyocytes can be efficiently generated from human urine, through the cellular reprogramming technology. DMD cardiomyocytes retained the patient’s genetic information and manifested a dystrophin-null phenotype. Functional assessments are underway to determine differences that may exist between genotypes.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Wulan Dari Neng Gumiwang ◽  
Tintrim Rahayu ◽  
Ari Hayati

The purpose of this research is to determine the concentration of young coconut water that is appropriate for the growth of orchid plantlets (Dendrobium sp.) In vitro. This study used an experimental method, descriptive data analysis to compare several different concentrations of coconut water. The design of this study uses a completely randomized design (CRD). The treatments consist of 0% coconut water concentration (as a control), 15%, 30% and 60%. Each concentration was carried out 5 replications and each repetition consisted of 5 Dendrobium sp plantlets in each culture bottle conducted for 40 HST, for observing the root length carried out for 50 HST. The highest number of shoots and leaves were produced at the same concentration, namely 150 ml / L coconut water treatment (15% concentration) with an average of 2.8 shoots and the average number of leaves 10.8 leaves. The average number of roots and the longest root length was produced at a concentration of 600 ml / L coconut water (60% concentration) with an average of 6 roots, and the longest root length was 0.5 cm.Keywords: Young coconut water, (Cocos nucifera L.), Dendrobium sp., in vitro, growth.ABSTRAKTujuan penelitian ini ialah menentukan konsentrasi air kelapa muda yang tepat untuk pertumbuhan planlet anggrek (Dendrobium sp.) secara in vitro. Penelitian ini menggunakan metode eksperimen, analisis data secara deskriptif untuk membandingan beberapa konsentrasi air kelapa yang berbeda. Rancangan penelitian ini menggunakan Rancangan Acak Lengkap (RAL). Perlakukan terdiri dari konsentrasi air kelapa 0 % (sebagai kontrol), 15% , 30% dan 60%. Masing-masing konsentrasi dilakukan 5 kali ulangan dan setiap ulangan terdiri dari 5 planlet Dendrobium sp dalam setiap botol kultur yang dilakukan selama 40 HST, untuk pengamatan panjang akar dilakukan selama 50 HST. Jumlah tunas dan jumlah daun terbanyak dihasilkan pada konsentrasi yang sama, yaitu perlakuan air kelapa 150 ml/L (konsentrasi 15%)  dengan rata-rata jumlah tunas terbanyak 2,8 tunas dan rata-rata jumlah daun terbanyak 10,8 helai daun. Rata-rata jumlah akar terbanyak dan panjang akar terpanjang dihasilkan pada konsentrasi air kelapa 600 ml/L (Konsentrasi 60%) dengan rata-rata jumlah akar terbanyak sebanyak 6 akar, dan rata-rata panjang akar terpanjang 0,5 cm.Kata kunci : Air kelapa Muda (Cocos nucifera L.), Dendrobium sp., in vitro, pertumbuhan 


Sign in / Sign up

Export Citation Format

Share Document