scholarly journals Metabolic Perturbation and Synthetic Biology Strategies for Plant Terpenoid Production—An Updated Overview

Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2179
Author(s):  
Vimalraj Mani ◽  
Soyoung Park ◽  
Jin A Kim ◽  
Soo In Lee ◽  
Kijong Lee

Terpenoids represent one of the high-value groups of specialized metabolites with vast structural diversity. They exhibit versatile human benefits and have been successfully exploited in several sectors of day-to-day life applications, including cosmetics, foods, and pharmaceuticals. Historically, the potential use of terpenoids is challenging, and highly hampered by their bioavailability in their natural sources. Significant progress has been made in recent years to overcome such challenges by advancing the heterologous production platforms of hosts and metabolic engineering technologies. Herein, we summarize the latest developments associated with analytical platforms, metabolic engineering, and synthetic biology, with a focus on two terpenoid classes: monoterpenoids and sesquiterpenoids. Accumulated data showed that subcellular localization of both the precursor pool and the introduced enzymes were the crucial factors for increasing the production of targeted terpenoids in plants. We believe this timely review provides a glimpse of current state-of-the-art techniques/methodologies related to terpenoid engineering that would facilitate further improvements in terpenoids research.

2021 ◽  
Vol 65 (2) ◽  
pp. 143-145
Author(s):  
Pablo I. Nikel ◽  
Diethard Mattanovich

Abstract An increasingly large number of microbial species with potential for synthetic biology and metabolic engineering has been introduced over the last few years, adding huge variety to the opportunities of biotechnology. Historically, however, only a handful of microbes have attained the acceptance and widespread use that are needed to fulfil the needs of industrial bioproduction. Synthetic biology is setting out to standardise the methods, parts and platform organisms for bioproduction. These platform organisms, or chassis cells, derive from what has been termed microbial cell factories since the 1990s. In this collection of reviews, 18 microbial cell factories are featured, which belong to one of these three groups: (i) microbes already used before modern biotechnology was introduced; (ii) the first generation of engineered microbes; and (iii) promising new host organisms. The reviews are intended to provide readers with an overview of the current state of methodology and application of these cell factories, and with guidelines of how to use them for bioproduction.


1983 ◽  
Vol 22 (1) ◽  
pp. 57-61
Author(s):  
Shahrukh Rafi Khan

The book under review is a compilation of the author's articles and lectures that highlight the prominent developments in the literature on the subject of Islamic banking and inform the reader of the current state of debate on it. One of the earliest and main contributors to this topic is the author himself. The focus of this review will mainly be on "Economics of Profit-Sharing", which is the title of the fourth chapter of the book and is among his latest contributions. This chapter is a significant contribution as it is the first attempt to formalise the concept of profit sharing into an analytical model and, therefore, demands closer scrutiny. However, in the remaining chapters of the book, the author has drawn attention to some of the fine points made in the literature on this topic. Since some of these points appear to be controversial to me, I will briefly discuss them before moving on to the analytical chapter of the book.


Author(s):  
Hans-Jörg Rheinberger

AbstractHub Zwart’s article is about the idea—and the practice—of an embedded philosophy of science, that is, a philosophy participating in and at the same time reflecting about the current state of the sciences facing the Anthropocene, to which I am very sympathetic. There are, however, two caveats. The first is that participation is always in danger to end up in a more or less uncritical eulogy, in the present case of synthetic biology. The second is that I have doubts about packing the historical path of scientific development into the Procrustes bed of Hegelian dialectics. This usually leads to one or the other form of teleology.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Jing Wui Yeoh ◽  
Neil Swainston ◽  
Peter Vegh ◽  
Valentin Zulkower ◽  
Pablo Carbonell ◽  
...  

Abstract Advances in hardware automation in synthetic biology laboratories are not yet fully matched by those of their software counterparts. Such automated laboratories, now commonly called biofoundries, require software solutions that would help with many specialized tasks such as batch DNA design, sample and data tracking, and data analysis, among others. Typically, many of the challenges facing biofoundries are shared, yet there is frequent wheel-reinvention where many labs develop similar software solutions in parallel. In this article, we present the first attempt at creating a standardized, open-source Python package. A number of tools will be integrated and developed that we envisage will become the obvious starting point for software development projects within biofoundries globally. Specifically, we describe the current state of available software, present usage scenarios and case studies for common problems, and finally describe plans for future development. SynBiopython is publicly available at the following address: http://synbiopython.org.


2021 ◽  
Vol 22 (8) ◽  
pp. 4018
Author(s):  
Anna Masek ◽  
Angelika Plota

In the field of polymer technology, a variety of mainly synthetic additives are used to stabilize the materials during processing. However, natural compounds of plant origin can be a green alternative to chemicals such as synthetic polyphenols. An analysis of the effect of hesperidin on the aging behavior of ethylene-norbornene copolymer was performed. The evaluation of changes in the tested samples was possible by applying the following tests: determination of the surface energy and OIT values, mechanical properties analysis, colour change measurements, FT-IR and TGA analyses. The obtained results proved that hesperidin can be effectively used as natural stabilizer for polymers. Furthermore, as a result of this compound addition to Topas-silica composites, their surface and physico-mechanical properties have been improved and the resistance to aging significantly increased. Additionally, hesperidin can act as a dye or colour indicator and only few scientific reports describe a possibility of using flavonoids to detect changes in products during their service life, e.g., in food packaging. In the available literature, there is no information about the potential use of hesperidin as a stabilizer for cycloolefin copolymers. Therefore, this approach may contribute not only to the current state of knowledge, but also presents an eco-friendly solution that can be a good alternative to synthetic stabilizers.


Metabolites ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 35
Author(s):  
An N. T. Phan ◽  
Lars M. Blank

In times of ever-increasing demand for chemicals and the subsequent increase in CO2 in the atmosphere, we have to intensify our efforts to establish a circular (bio) economy [...]


2017 ◽  
Vol 241 ◽  
pp. 430-438 ◽  
Author(s):  
Chonglong Wang ◽  
Bakht Zada ◽  
Gongyuan Wei ◽  
Seon-Won Kim

1988 ◽  
Vol 135 ◽  
Author(s):  
Michael M Thackeray

AbstractConsiderable efforts are in progress to develop rechargeable batteries as alternative systems to the nickel-cadmium battery. In this regard, several advances have been made in ambient-temperature lithium battery technology, and specifically in the engineering of rechargeable lithium/manganese dioxide cells. This paper reviews the current state of the art in rechargeable Li/MnO2battery technology; particular attention is paid to the structural features of various MnO2electrode materials which influence their electrochemical and cycling behaviour in lithium cells.


Sign in / Sign up

Export Citation Format

Share Document