scholarly journals Analysis of Salinity Tolerance in Tomato Introgression Lines Based on Morpho-Physiological and Molecular Traits

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2594
Author(s):  
Ahmed Abdelrahim Mohamed Ali ◽  
Walid Ben Ben Romdhane ◽  
Mohamed Tarroum ◽  
Mohammed Al-Dakhil ◽  
Abdullah Al-Doss ◽  
...  

The development of salt-tolerant tomato genotypes is a basic requirement to overcome the challenges of tomato production under salinity in the field or soil-free farming. Two groups of eight tomato introgression lines (ILs) each, were evaluated for salinity tolerance. Group-I and the group-II resulted from the following crosses respectively: Solanum lycopersicum cv-6203 × Solanum habrochaites and Solanum lycopersicum M82 × Solanum pennellii. Salt tolerance level was assessed based on a germination percentage under NaCl (0, 75, 100 mM) and in the vegetative stage using a hydroponic growing system (0, 120 mM NaCl). One line from group I (TA1648) and three lines from group II (IL2-1, IL2-3, and IL8-3) were shown to be salt-tolerant since their germination percentages were significantly higher at 75 and 100 mM NaCl than that of their respective cultivated parents cvE6203 and cvM82. Using the hydroponic system, IL TA1648 and IL 2-3 showed the highest value of plant growth traits and chlorophyll concentration. The expression level of eight salt-responsive genes in the leaves and roots of salt-tolerant ILs (TA1648 and IL 2-3) was estimated. Interestingly, SlSOS1, SlNHX2, SlNHX4, and SlERF4 genes were upregulated in leaves of both TA1648 and IL 2-3 genotypes under NaCl stress. While SlHKT1.1, SlNHX2, SlNHX4, and SlERF4 genes were upregulated under salt stress in the roots of both TA1648 and IL 2-3 genotypes. Furthermore, SlSOS2 and SlSOS3 genes were upregulated in TA1648 root and downregulated in IL 2-3. On the contrary, SlSOS1 and SlHKT1.2 genes were upregulated in the IL 2-3 root and downregulated in the TA1648 root. Monitoring of ILs revealed that some of them have inherited salt tolerance from S. habrochaites and S. pennellii genetic background. These ILs can be used in tomato breeding programs to develop salt-tolerant tomatoes or as rootstocks in grafting techniques under saline irrigation conditions.

2013 ◽  
Vol 19 (2) ◽  
pp. 57-65
Author(s):  
MH Kabir ◽  
MM Islam ◽  
SN Begum ◽  
AC Manidas

A cross was made between high yielding salt susceptible BINA variety (Binadhan-5) with salt tolerant rice landrace (Harkuch) to identify salt tolerant rice lines. Thirty six F3 rice lines of Binadhan-5 x Harkuch were tested for salinity tolerance at the seedling stage in hydroponic system using nutrient solution. In F3 population, six lines were found as salt tolerant and 10 lines were moderately tolerant based on phenotypic screening at the seedling stage. Twelve SSR markers were used for parental survey and among them three polymorphic SSR markers viz., OSR34, RM443 and RM169 were selected to evaluate 26 F3 rice lines for salt tolerance. With respect to marker OSR34, 15 lines were identified as salt tolerant, 9 lines were susceptible and 2 lines were heterozygous. While RM443 identified 3 tolerant, 14 susceptible and 9 heterozygous rice lines. Eight tolerant, 11 susceptible and 7 heterozygous lines were identified with the marker RM169. Thus the tested markers could be efficiently used for tagging salt tolerant genes in marker-assisted breeding programme.DOI: http://dx.doi.org/10.3329/pa.v19i2.16929 Progress. Agric. 19(2): 57 - 65, 2008


2019 ◽  
Vol 55 (No. 2) ◽  
pp. 61-69 ◽  
Author(s):  
Dorsaf Allel ◽  
Anis BenAmar ◽  
Mounawer Badri ◽  
Chedly Abdelly

Soil salinity is one of the main factors limiting cereal productivity in worldwide agriculture. Exploitation of natural variation in local barley germplasm is an effective approach to overcome yield losses. Three gene pools of North African Hordeum vulgare L. grown in Tunisia, Algeria and Egypt were evaluated at the reproductive stage under control and saline conditions. Assessment of stress tolerance was monitored using morphological, yield-related traits and phenological parameters of reproductive organs showing significant genetic variation. High heritability and positive relationships were found suggesting that some traits associated with salt tolerance could be used as selection criteria. The phenotypic correlations revealed that vegetative traits including shoot biomass, tiller number and leaf number along with yield-related traits such as spike number, one spike dry weight, grain number/plant and grain number/spike were highly positively correlated with grain yield under saline conditions. Hence, these traits can be used as reliable selection criteria to improve barley grain yield. Keeping a higher shoot biomass and longer heading and maturity periods as well as privileged filling ability might contribute to higher grain production in barley and thus could be potential target traits in barley crop breeding toward improvement of salinity tolerance. Multiple selection indices revealed that salt tolerance trait index provided a better discrimination of barley landraces allowing selection of highly salt-tolerant and highly productive genotypes under severe salinity level. Effective evaluation of salt tolerance requires an integration of selection indices to successfully identify and characterize salt tolerant lines required for valuable exploitation in the management of salt-affected areas.  


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 712
Author(s):  
Md Sarowar Alam ◽  
Mark Tester ◽  
Gabriele Fiene ◽  
Magdi Ali Ahmed Mousa

Salinity is one of the most significant environmental stresses for sustainable crop production in major arable lands of the globe. Thus, we conducted experiments with 27 tomato genotypes to screen for salinity tolerance at seedling stage, which were treated with non-salinized (S1) control (18.2 mM NaCl) and salinized (S2) (200 mM NaCl) irrigation water. In all genotypes, the elevated salinity treatment contributed to a major depression in morphological and physiological characteristics; however, a smaller decrease was found in certain tolerant genotypes. Principal component analyses (PCA) and clustering with percentage reduction in growth parameters and different salt tolerance indices classified the tomato accessions into five key clusters. In particular, the tolerant genotypes were assembled into one cluster. The growth and tolerance indices PCA also showed the order of salt-tolerance of the studied genotypes, where Saniora was the most tolerant genotype and P.Guyu was the most susceptible genotype. To investigate the possible biochemical basis for salt stress tolerance, we further characterized six tomato genotypes with varying levels of salinity tolerance. A higher increase in proline content, and antioxidants activities were observed for the salt-tolerant genotypes in comparison to the susceptible genotypes. Salt-tolerant genotypes identified in this work herald a promising source in the tomato improvement program or for grafting as scions with improved salinity tolerance in tomato.


HortScience ◽  
2007 ◽  
Vol 42 (2) ◽  
pp. 205-209 ◽  
Author(s):  
Y.L. Qian ◽  
J.M. Fu ◽  
S.J. Wilhelm ◽  
D. Christensen ◽  
A.J. Koski

Salt-tolerant turfgrass is highly desirable in areas associated with saline soils or saline irrigation waters. To determine the salt tolerance of 14 saltgrass [Distichlis spicata var. stricta (Greene)] selections, two greenhouse studies were conducted by means of a hydroponic culture system. Five salinity levels (from 2 to 48 dS·m−1) were created with ocean salts. In general, turf quality decreased and leaf firing increased as salinity increased. However, varying levels of salt tolerance were observed among selections based on leaf firing, turf quality, root growth, and clipping yield. Selections COAZ-01, COAZ-18, CO-01, and COAZ-19 exhibited the best turf quality and the least leaf firing at 36 and 48 dS·m−1 salinity levels in both Experiments 1 and 2. At the highest salinity level (48 dS·m−1), COAZ-18 and COAZ-19 exhibited the highest root activity among all accessions. Salinity levels that caused 25% clipping reduction ranged from 21.2 to 29.9 dS·m−1 and were not significantly different among entries. The data on 25% clipping reduction salinity of saltgrass generated in this study rank saltgrass as one of the most salt-tolerant species that can be used as turf.


2013 ◽  
Vol 7 (1-2) ◽  
pp. 65 ◽  
Author(s):  
Lu Sun ◽  
Fang-li Peng

Objective: To analyze the clinical efficacy of Simultaneous saline irrigation method in treating upper-mid ureteral stone migration and overall efficiency during ureteroscopic lasertripsy. Methods: We prospectively evaluated 78 patients with a total of 95 upper-mid ureteral stones, which were treated with holmium: YAG lasertripsy. These patients were randomized into two groups. In group I (39 cases with 44 ureteral stones), conventional ureteroscopic lasertripsy was performed in like manner. While in group II (39 cases with 51 ureteral stones), the Simultaneous saline irrigation method was used during lasertripsy. There was no significant difference between the groups with regards to stone site, size or state of the upper urinary tract by spiral computed tomography or excretory urography. Data were analyzed regarding stone migration, lengths of time, and ureteral clearing for various stages of each procedure. Results: One patients (2%) occurred upward stone migration in group II, while in group I it occurred in eight patients (20%).The operative time in group I ranged between 35 to 55 minutes (mean, 44.8±5.3), while in group II it ranged between 40 to 69 minutes (mean, 50.4±3), The operative time was no significant difference between the groups  (p<0.05). Ureteral perforation, urinoma, and urosepsis were not seen in both groups. Conclusion:Simultaneous saline irrigation method demonstrated a statistically significant advantage over the conventional methods. Operation can be performed persistently under clear vision, and the calculus can not be moved upwards, the fragmentation easily to be flushed out. Our data suggest that this method is simple,safe and effective in preventing proximal stone migration during ureteroscopic lasertripsy.


Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 569
Author(s):  
Annick Bertrand ◽  
Craig Gatzke ◽  
Marie Bipfubusa ◽  
Vicky Lévesque ◽  
Francois P. Chalifour ◽  
...  

Alfalfa and its rhizobial symbiont are sensitive to salinity. We compared the physiological responses of alfalfa populations inoculated with a salt-tolerant rhizobium strain, exposed to five NaCl concentrations (0, 20, 40, 80, or 160 mM NaCl). Two initial cultivars, Halo (H-TS0) and Bridgeview (B-TS0), and two populations obtained after three cycles of recurrent selection for salt tolerance (H-TS3 and B-TS3) were compared. Biomass, relative water content, carbohydrates, and amino acids concentrations in leaves and nodules were measured. The higher yield of TS3-populations than initial cultivars under salt stress showed the effectiveness of our selection method to improve salinity tolerance. Higher relative root water content in TS3 populations suggests that root osmotic adjustment is one of the mechanisms of salt tolerance. Higher concentrations of sucrose, pinitol, and amino acid in leaves and nodules under salt stress contributed to the osmotic adjustment in alfalfa. Cultivars differed in their response to recurrent selection: under a 160 mM NaCl-stress, aromatic amino acids and branched-chain amino acids (BCAAs) increased in nodules of B-ST3 as compared with B-TS0, while these accumulations were not observed in H-TS3. BCAAs are known to control bacteroid development and their accumulation under severe stress could have contributed to the high nodulation of B-TS3.


HortScience ◽  
2020 ◽  
Vol 55 (7) ◽  
pp. 1119-1131
Author(s):  
Iryna Andrenko ◽  
Thayne Montague ◽  
Cynthia McKenney ◽  
Russell Plowman

Water quality and quantity are critical issues in the Southwest United States and many other locations in the world. Use of reclaimed water for landscape irrigation can conserve potable water significantly and possibly reduce fertilizer application. A potential concern of using alternative water sources is elevated salt levels, which can have adverse effects on plant growth and aesthetic appearance. Most Texas native wildflowers are known to be hardy and easy to maintain, and are drought tolerant after establishment. In addition, native wildflowers provide wildlife habitat and support native pollinators. However, little information is available on salinity tolerance of many Texas native wildflower species. In this study, two separate hydroponic experiments were conducted to determine salt tolerance of three Texas native wildflower species: Gaura villosa Torr. (wooly gaura), Xanthisma texanum DC. (Texas sleepy daisy), and Ipomopsis rubra (L.) Wherry (standing cypress). Species were suspended in a hydroponic setting using a randomized complete block design with a control [municipal reverse-osmosis (RO) water with a nutrition solution at an electrical conductivity (EC) of 3.0 dS·m–1] and three salinity treatments: 5.0, 7.0, and 11.0 dS·m–1 EC. Sixty days after salinity treatments were initiated, percent survival, visual rating, fresh weight, and length measurements were recorded on root and shoot tissue. To determine tissue percentage sodium (Na+), calcium (Ca2+), and chloride (Cl–), shoot and root tissues were dried and ground for tissue analysis. At the end of each experiment, total percent survival for X. texanum, G. villosa, and I. rubra were 100%, 94%, and 76%, respectively, with the greatest mortality rate at the highest salinity treatment. Shoot dry weight and plant growth index (PGI) decreased in all three species as salinity of irrigation water increased. Visual qualities of all species were mainly compromised at the highest salinity level. Ion concentrations in root and shoot tissues were affected by salinity levels and varied among species. Different mechanisms of salt tolerance (ion exclusion, salt excretion, and tissue tolerance to high concentrations of Na+ or Cl–) have been observed among wildflower species, and results indicate different salt tolerance mechanisms were exhibited by each trial species. In addition, results indicate I. rubra can be identified as moderately salt tolerant (EC up to 7.0 dS·m–1), whereas, X. texanum and G. villosa can be classified as salt tolerant (EC up to 11.0 dS·m–1). Results from this study suggest great potential of these native Texas wildflowers in landscapes using limited-quality irrigation water or landscapes with soil salinity concerns.


Agronomy ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 211 ◽  
Author(s):  
Al-Ashkar ◽  
Alderfasi ◽  
El-Hendawy ◽  
Al-Suhaibani ◽  
El-Kafafi ◽  
...  

Improving salt tolerance of genotypes requires a source of genetic variation and multiple accurate selection criteria for discriminating their salt tolerance. A combination of morpho-physiological and biochemical parameters and multivariate analysis was used to detect salt tolerance variation in 15 wheat lines developed by doubled haploid (DHL) technique. They were then compared with the salt-tolerant check cultivar Sakha 93. Salinity stress was investigated at three salinity levels (0, 100, and 200 mM NaCl) for 25 days. Considerable genetic variation was observed for all traits, as was high heritability (>60%) and genetic gain (>20%). Principal component analysis indicated the ability of nine traits (root number, root length, root dry weight, shoot length, shoot dry weight, specific root length, relative water content, membrane stability index, and catalase) to identify differences in salinity tolerance among lines. Three traits (shoot length, shoot dry weight, and catalase) were indicative of salt-tolerance, indicating their importance in improving and evaluating salt tolerant genotypes for breeding programs. The salinity tolerance membership index based on these three traits classified one new line (DHL21) and the check cultivar (Sakha 93) as highly salt-tolerant, DHL25, DHL26, DHL2, DHL11, and DHL5 as tolerant, and DHL23 and DHL12 as intermediate. Discriminant function analysis and MANOVA suggested differences among the five groups of tolerance. Among the donor genotypes, Sakha 93 remained the donor of choice for improving salinity tolerance during the seedling stage. The tolerated lines (DHL21, DHL25, DHL26, DHL2, DHL11, and DHL5) could be also recommended as useful and novel genetic resources for improving salinity tolerance of wheat in breeding programs.


Rice ◽  
2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Bing-Rui Sun ◽  
Chong-Yun Fu ◽  
Zhi-Lan Fan ◽  
Yu Chen ◽  
Wen-Feng Chen ◽  
...  

Abstract Background Salt stress is an important factor that limits rice yield. We identified a novel, strongly salt tolerant rice landrace called Changmaogu (CMG) collected from a coastal beach of Zhanjiang, Guangdong Province, China. The salt tolerance of CMG was much better than that of the international recognized salt tolerant rice cultivar Pokkali in the germination and seedling stages. Results To understand the molecular basis of salt tolerance in CMG, we performed BSA-seq for two extreme bulks derived from the cross between CMG and a cultivar sensitive to salt, Zhefu802. Transcriptomic sequencing was conducted for CMG at the germination and young seedling stages. Six candidate regions for salt tolerance were mapped on Chromosome 1 by BSA-seq using the extreme populations. Based on the polymorphisms identified between both parents, we detected 32 genes containing nonsynonymous coding single nucleotide polymorphisms (SNPs) and frameshift mutations in the open reading frame (ORF) regions. With transcriptomic sequencing, we detected a large number of differentially expressed genes (DEGs) at the germination and seedling stages under salt stress. KEGG analysis indicated two of 69 DEGs shared at the germination and seedling stages were significantly enriched in the pathway of carotenoid biosynthesis. Of the 169 overlapping DEGs among three sample points at the seedling stage, 13 and six DEGs were clustered into the pathways of ABA signal transduction and carotenoid biosynthesis, respectively. Of the 32 genes carrying sequence variation, only OsPP2C8 (Os01g0656200) was differentially expressed in the young seedling stage under salt stress and also showed sequence polymorphism in the ORFs between CMG and Zhefu802. Conclusion OsPP2C8 was identified as the target candidate gene for salinity tolerance in the seedling stage. This provides an important genetic resource for the breeding of novel salt tolerant rice cultivars.


Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1324 ◽  
Author(s):  
Elsayed Mansour ◽  
Ehab S. A. Moustafa ◽  
El-Sayed M. Desoky ◽  
Mohamed M. A. Ali ◽  
Mohamed A. T. Yasin ◽  
...  

Field-based trials and genotype evaluation until yielding stage are two important steps in improving the salt tolerance of crop genotypes and identifying what parameters can be strong candidates for the better understanding of salt tolerance mechanisms in different genotypes. In this study, the salt tolerance of 18 bread wheat genotypes was evaluated under natural saline field conditions and at three saline irrigation levels (5.25, 8.35, and 11.12 dS m−1) extracted from wells. Multidimensional evaluation for salt tolerance of these genotypes was done using a set of agronomic and physio-biochemical attributes. Based on yield index under three salinity levels, the genotypes were classified into four groups ranging from salt-tolerant to salt-sensitive genotypes. The salt-tolerant genotypes exhibited values of total chlorophyll, gas exchange (net photosynthetic rate, transpiration rate, and stomatal conductance), water relation (relative water content and membrane stability index), nonenzymatic osmolytes (soluble sugar, free proline, and ascorbic acid), antioxidant enzyme activities (superoxide dismutase, catalase, and peroxidase), K+ content, and K+/Na+ ratio that were greater than those of salt-sensitive genotypes. Additionally, the salt-tolerant genotypes consistently exhibited good control of Na+ and Cl− levels and maintained lower contents of malondialdehyde and electrolyte leakage under high salinity level, compared with the salt-sensitive genotypes. Several physio-biochemical parameters showed highly positive associations with grain yield and its components, whereas negative association was observed in other parameters. Accordingly, these physio-biochemical parameters can be used as individual or complementary screening criteria for evaluating salt tolerance and improvement of bread wheat genotypes under natural saline field conditions.


Sign in / Sign up

Export Citation Format

Share Document