scholarly journals To Fight or to Grow: The Balancing Role of Ethylene in Plant Abiotic Stress Responses

Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 33
Author(s):  
Hao Chen ◽  
David A. Bullock ◽  
Jose M. Alonso ◽  
Anna N. Stepanova

Plants often live in adverse environmental conditions and are exposed to various stresses, such as heat, cold, heavy metals, salt, radiation, poor lighting, nutrient deficiency, drought, or flooding. To adapt to unfavorable environments, plants have evolved specialized molecular mechanisms that serve to balance the trade-off between abiotic stress responses and growth. These mechanisms enable plants to continue to develop and reproduce even under adverse conditions. Ethylene, as a key growth regulator, is leveraged by plants to mitigate the negative effects of some of these stresses on plant development and growth. By cooperating with other hormones, such as jasmonic acid (JA), abscisic acid (ABA), brassinosteroids (BR), auxin, gibberellic acid (GA), salicylic acid (SA), and cytokinin (CK), ethylene triggers defense and survival mechanisms thereby coordinating plant growth and development in response to abiotic stresses. This review describes the crosstalk between ethylene and other plant hormones in tipping the balance between plant growth and abiotic stress responses.

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Uday Chand Jha ◽  
Harsh Nayyar ◽  
Rintu Jha ◽  
Muhammad Khurshid ◽  
Meiliang Zhou ◽  
...  

Abstract Background The immobile nature of plants means that they can be frequently confronted by various biotic and abiotic stresses during their lifecycle. Among the various abiotic stresses, water stress, temperature extremities, salinity, and heavy metal toxicity are the major abiotic stresses challenging overall plant growth. Plants have evolved complex molecular mechanisms to adapt under the given abiotic stresses. Long non-coding RNAs (lncRNAs)—a diverse class of RNAs that contain > 200 nucleotides(nt)—play an essential role in plant adaptation to various abiotic stresses. Results LncRNAs play a significant role as ‘biological regulators’ for various developmental processes and biotic and abiotic stress responses in animals and plants at the transcription, post-transcription, and epigenetic level, targeting various stress-responsive mRNAs, regulatory gene(s) encoding transcription factors, and numerous microRNAs (miRNAs) that regulate the expression of different genes. However, the mechanistic role of lncRNAs at the molecular level, and possible target gene(s) contributing to plant abiotic stress response and adaptation, remain largely unknown. Here, we review various types of lncRNAs found in different plant species, with a focus on understanding the complex molecular mechanisms that contribute to abiotic stress tolerance in plants. We start by discussing the biogenesis, type and function, phylogenetic relationships, and sequence conservation of lncRNAs. Next, we review the role of lncRNAs controlling various abiotic stresses, including drought, heat, cold, heavy metal toxicity, and nutrient deficiency, with relevant examples from various plant species. Lastly, we briefly discuss the various lncRNA databases and the role of bioinformatics for predicting the structural and functional annotation of novel lncRNAs. Conclusions Understanding the intricate molecular mechanisms of stress-responsive lncRNAs is in its infancy. The availability of a comprehensive atlas of lncRNAs across whole genomes in crop plants, coupled with a comprehensive understanding of the complex molecular mechanisms that regulate various abiotic stress responses, will enable us to use lncRNAs as potential biomarkers for tailoring abiotic stress-tolerant plants in the future.


2021 ◽  
Author(s):  
Ankita Yadav ◽  
Sanoj Kumar ◽  
Rita Verma ◽  
Shashi Pandey Rai ◽  
Charu Lata ◽  
...  

Abstract Legumes are an indispensable food after cereals with extensive production across the world. The legume production is imposed with limitations and has been augmented by various environmental stresses. The symbiotic relations between legumes and rhizobacteria have been an intriguing topic of research in view of their roles in plant growth, development and various stress responses. Recent advances on gene networks involving plethora of evolutionarily conserved miRNAs have been investigated pertaining to their roles in plant stress responses. The interaction between plant growth promoting rhizobacteria (PGPR) strain Pseudomonas putida RA, MTCC5279 and abiotic stress responsive miRNAs have previously been studied with roles in abiotic stress mitigation by modulating stress responsive miRNAs and their target genes. The present studyis an investigation involving the role of RA in abiotic stress responsive miR166h for drought mitigation in tolerant desi chickpea genotype. miRNA166 directed cleavage of its target, ATHB15 has been drifted of drought treated plantlets upon RA inoculation using 5´RLM-RACE analysis. Drought stressed chickpea plants when inoculated with growth promoting rhizobacteria, RA, the inverse correlation in expression patterns were noticed in miR166h and its validated target, ATHB15. Tissue-specific expression patterns in 15 days old chickpea seedlings including leaves, shoot and roots when exposed to salinity, drought and abscisic acid at different time points indicated the role of miR166 in different abiotic stress response. In view of the results, validation and functional characterization of such interactions involving stress responsive miRNAs along with microbial stress management techniques could be an important technique for crop improvement.


2014 ◽  
Vol 32 (1) ◽  
pp. 40-52 ◽  
Author(s):  
Agyemang Danquah ◽  
Axel de Zelicourt ◽  
Jean Colcombet ◽  
Heribert Hirt

Author(s):  
Jannela Praveena ◽  
Satyanarayan Dash ◽  
Laxmipreeya Behera ◽  
Gyana Ranjan Rout

Brassinosteroids (BRs) act as immune-modulators for generating plant growth and development. It regulated either activation or suppression of various key enzymatic reactions, activation of synthesis of protein, and generation of various defense modulating compounds for the plant kingdom. BRs play a vital role in regulating cellular differentiation, pollen development, fruit ripening, and quality seed formation.   BRs regulates the various physiological process including root growth during nutrient deficiency such as nitrogen, phosphorus, boron and tends to signal the nutrient distribution in the rhizosphere level for better growth and high yield in crop plants. This review highlighted the role of BRs in plant growth and development and stress response, understanding the BR pathway, the molecular mechanism of BR signaling in various tissues, crosstalk between BRs and other phytohormones, gene involves in the brassinosteroids signaling pathway, biosynthesis and  role of  BRs  in  biomass production and crop yield.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xian Zhi Fang ◽  
Shu Qin Fang ◽  
Zheng Qian Ye ◽  
Dan Liu ◽  
Ke Li Zhao ◽  
...  

NRT1.1 is the first nitrate transport protein cloned in plants and has both high- and low-affinity functions. It imports and senses nitrate, which is modulated by the phosphorylation on Thr101 (T101). Structural studies have revealed that the phosphorylation of T101 either induces dimer decoupling or increases structural flexibility within the membrane, thereby switching the NRT1.1 protein from a low- to high-affinity state. Further studies on the adaptive regulation of NRT1.1 in fluctuating nitrate conditions have shown that, at low nitrate concentrations, nitrate binding only at the high-affinity monomer initiates NRT1.1 dimer decoupling and priming of the T101 site for phosphorylation activated by CIPK23, which functions as a high-affinity nitrate transceptor. However, nitrate binding in both monomers retains the unmodified NRT1.1, maintaining the low-affinity mode. This NRT1.1-mediated nitrate signalling and transport may provide a key to improving the efficiency of plant nitrogen use. However, recent studies have revealed that NRT1.1 is extensively involved in plant tolerance of several adverse environmental conditions. In this context, we summarise the recent progress in the molecular mechanisms of NRT1.1 dual-affinity nitrate transport/signalling and focus on its expected and unexpected roles in plant abiotic stress resistance and their regulation processes.


Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1886
Author(s):  
Hui Jin Kim ◽  
Subhin Seomun ◽  
Youngdae Yoon ◽  
Geupil Jang

The phytohormone jasmonic acid (JA), a cyclopentane fatty acid, mediates plant responses to abiotic stresses. Abiotic stresses rapidly and dynamically affect JA metabolism and JA responses by upregulating the expression of genes involved in JA biosynthesis and signaling, indicating that JA has a crucial role in plant abiotic stress responses. The crucial role of JA has been demonstrated in many previous studies showing that JA response regulates various plant defense systems, such as removal of reactive oxygen species and accumulation of osmoprotectants. Furthermore, increasing evidence shows that plant tolerance to abiotic stresses is linked to the JA response, suggesting that abiotic stress tolerance can be improved by modulating JA responses. In this review, we briefly describe the JA biosynthetic and signaling pathways and summarize recent studies showing an essential role of JA in plant responses and tolerance to a variety of abiotic stresses, such as drought, cold, salt, and heavy metal stress. Additionally, we discuss JA crosstalk with another key stress hormone, abscisic acid, in plant abiotic stress responses.


2018 ◽  
Vol 19 (8) ◽  
pp. 2169 ◽  
Author(s):  
Dengwei Jue ◽  
Xuelian Sang ◽  
Liqin Liu ◽  
Bo Shu ◽  
Yicheng Wang ◽  
...  

Longan is an important fruit tree in the subtropical region of Southeast Asia and Australia. However, its blooming and its yield are susceptible to stresses such as droughts, high salinity, and high and low temperature. To date, the molecular mechanisms of abiotic stress tolerance and flower induction in longan have not been elucidated. WRKY transcription factors (TFs), which have been studied in various plant species, play important regulatory roles in plant growth, development, and responses to stresses. However, there is no report about WRKYs in longan. In this study, we identified 55 WRKY genes with the conserved WRKY domain and zinc finger motif in the longan genome. Based on the structural features of WRKY proteins and topology of the phylogenetic tree, the longan WRKY (DlWRKY) family was classified into three major groups (I–III) and five subgroups (IIa–IIe) in group II. Tissue expression analysis showed that 25 DlWRKYs were highly expressed in almost all organs, suggesting that these genes may be important for plant growth and organ development in longan. Comparative RNA-seq and qRT-PCR-based gene expression analysis revealed that 18 DlWRKY genes showed a specific expression during three stages of flower induction in “Sijimi” (“SJ”), which exhibited the “perpetual flowering” (PF) habit, indicating that these 18 DlWRKY genes may be involved in the flower induction and the genetic control of the perpetual flowering trait in longan. Furthermore, the RT-qPCR analysis illustrated the significant variation of 27, 18, 15, 17, 27, and 23 DlWRKY genes under SA (Salicylic acid), MeJA (Methyl Jasmonate), heat, cold, drought, or high salinity treatment, respectively, implicating that they might be stress- or hormone-responsive genes. In summary, we systematically and comprehensively analyzed the structure, evolution, and expression pattern of the DlWRKY genes. The results presented here increase our understanding of the WRKY family in fruit trees and provide a basis for the further elucidation of the biological function of DlWRKY genes in longan.


2013 ◽  
Vol 55 (10) ◽  
pp. 892-901 ◽  
Author(s):  
Lianyu Yuan ◽  
Xuncheng Liu ◽  
Ming Luo ◽  
Songguang Yang ◽  
Keqiang Wu

Sign in / Sign up

Export Citation Format

Share Document