scholarly journals Effect of Multi-Year Environmental and Meteorological Factors on the Quality Traits of Winter Durum Wheat

Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 113
Author(s):  
Gyula Vida ◽  
Mónika Cséplő ◽  
Marianna Rakszegi ◽  
Judit Bányai

A detailed study was made of the effect of rainfall, average temperature and hot days on the gluten index and Minolta b* value of winter durum wheat sown in the field in 16 consecutive crop years (2005–2020). The joint analysis of these two technological quality traits represented a complex (plant–environment–meteorological factors) approach for the identification of durum wheat cultivars carrying an optimum combination of the two traits and for the determination of quality stability. The results of GGE-biplot analysis indicated that the cultivar that had the most favorable combination of the traits was ‘MVP’, while cultivar ‘GKS’ had the best gluten strength and ‘MVH’ the best yellow pigment content. Correlation analysis and stepwise regression between various meteorological factors (rainfall, mean temperature, number of heat days per 10-day period during grain-filling) and the two technological quality traits indicated that the expected value of the quality traits could be reliably estimated based on meteorological factors, with a generally negative effect on gluten index and a positive one on yellowness in all cultivars.

Foods ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 778
Author(s):  
Francesco Giunta ◽  
Simona Bassu ◽  
Marina Mefleh ◽  
Rosella Motzo

The growing interest in old durum wheat cultivars, due to enhanced consumer attention on healthy, traditional products and low-input agricultural systems, partly relies on their different quality characteristics compared to modern cultivars. Nine Italian durum wheat cultivars from different breeding periods were compared in two late-sown (January) field trials in order to subject their grain filling period to high temperatures similar to those expected in the future. Late sowing moved anthesis forward by about 10 days and increased the mean temperature during grain filling by 1.3 °C compared to that obtained when using the common sowing period of November–December. In these conditions, old cultivars were on average less productive than modern ones (2.36 vs. 3.54 tons ha−1, respectively), had a higher protein percentage (13.8% vs. 11.1%), a lower gluten index (24.3% vs. 56.3%), and a lower alveographic W (baking strength) (64 vs. 100 J 10−4). The differences were partly associated to variations in the gliadins:glutenins ratio. It depended on the genotype whether the grain and semolina protein percentage and gluten strength compensated one another in terms of alveographic indices to give the dough a strength similar to that of the modern cultivars in the range of moderately high temperatures, which resulted from delayed sowing. Further studies aimed at exploring the genetic variability of quality traits in the large genetic pool represented by the several Italian old and intermediate durum wheat cultivars still available are therefore advisable.


2019 ◽  
Vol 132 (6) ◽  
pp. 1873-1886 ◽  
Author(s):  
M. Rapp ◽  
A. Sieber ◽  
Ebrahim Kazman ◽  
Willmar L. Leiser ◽  
T. Würschum ◽  
...  

2000 ◽  
Vol 51 (7) ◽  
pp. 891 ◽  
Author(s):  
D. Villegas ◽  
N. Aparicio ◽  
M.M. Nachit ◽  
J. L. Araus ◽  
C. Royo

The relationships between various morphophysiological traits and yield were studied in durum wheat (Triticum durum Desf.) grown in Mediterranean conditions. Two sets of 22 genotypes were used. One was developed for semi-humid environments (TA-genotypes) and was cultivated in 22 trials around the Mediterranean basin with a mean yield across genotypes and environments of 4925 kg/ha. The other set was developed for drier conditions (CA-genotypes) and was cultivated in 15 trials, with a mean yield of 3501 kg/ha. Morphophysiological traits for each set were evaluated in 2 trials with contrasting water regimes conducted in north-eastern Spain: Lleida-rainfed (LR) and Lleida-irrigation (LI). Two kinds of traits were evaluated: developmental traits, including early vigour, plant height, and phenology (days from planting to heading and to maturity); and traits related to photosynthetic performance such as canopy temperature and chlorophyll content of the flag leaf, both measured during grain filling, and carbon isotope discrimination of mature grains. All the traits, measured in both Lleida trials, were related to the mean yield of the same genotypes across all the sites where they were cultivated. Yield measured at either of the 2 environments at Lleida was a much poorer predictor of genotype differences in mean yield than most of the traits. Nevertheless, the kind of environment where the morphophysiological traits were evaluated affected the performance of these traits as yield predictors. The combination of significant traits measured in the better environment (LI) explained 71% and 55% of genotype variability in yield within TA- and CA-genotypes, respectively, but only 56% and 27% when they were evaluated at LR. On the other hand, growing conditions of the yield trials was the main factor determining the best combination of traits. For TA-genotypes, larger yields were associated with shorter plants and higher carbon isotope discrimination (Δ) of grains, and to a lesser extent with higher early vigour and lower canopy temperature, whereas phenological traits made no contribution to explaining genotype differences in yield. For the CA-genotypes, higher yields were related to an earlier heading date or alternatively to a higher chlorophyll content during grain filling. A higher Δ in mature kernels also seems to be a positive trait.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Aleksandra M. Torbica ◽  
Jasna S. Mastilović ◽  
Milica M. Pojić ◽  
Žarko S. Kevrešan

The effects of wheat bug infestation (Eurygasterspp. andAeliaspp.) on the composition of wheat gluten proteins and its influence on flour technological quality were investigated in the present study. Wheat samples of six wheat varieties, collected from two localities in northern Serbia, were characterized by significantly different level of wheat bug infestation. Composition of wheat gluten proteins was determined using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS PAGE), while the selected parameters of technological quality were determined according to standard and modified empirical rheological methods (Farinograph, Extensograph, Alveograph, and Gluten Index). The surface morphology of the selected samples was viewed using scanning electron microscopy (SEM). Wheat from wheat bug-infested locality regardless of the variety had deteriorated technological quality expressed with higher Farinograph softening degree, lower or immeasurable Extensograph energy, and Alveograph deformation energy. The most important changes in the gluten proteins composition of bug-infested wheat were related to gliadin subunits with molecular weights below 75 kDa, which consequently caused deterioration of uniaxial and biaxial extensibility and dough softening during mixing.


2020 ◽  
Vol 12 (14) ◽  
pp. 5610
Author(s):  
Alireza Pour-Aboughadareh ◽  
Reza Mohammadi ◽  
Alireza Etminan ◽  
Lia Shooshtari ◽  
Neda Maleki-Tabrizi ◽  
...  

Durum wheat performance in the Mediterranean climate is limited when water scarcity occurs before and during anthesis. The present research was performed to determine the effect of drought stress on several physiological and agro-morphological traits in 17 durum wheat genotypes under two conditions (control and drought) over two years. The results of analysis of variance indicated that the various durum wheat genotypes responded differently to drought stress. Drought stress significantly reduced the grain filling period, plant height, peduncle length, number of spikes per plot, number of grains per spike, thousand grains weight, grain yield, biomass, and harvest index in all genotypes compared to the control condition. The heatmap-based correlation analysis indicated that grain yield was positively and significantly associated with phenological characters (days to heading, days to physiological maturity, and grain filling period), as well as number of spikes per plant, biomass, and harvest index under drought conditions. The yield-based drought and susceptible indices revealed that stress tolerance index (STI), geometric mean productivity (GMP), mean productivity (MP), and harmonic mean (HM) were positively and significantly correlated with grain yields in both conditions. Based on the average of the sum of ranks across all indices and a three-dimensional plot, two genotypes (G9 and G12) along with the control variety (G1) were identified as the most tolerant genotypes. Among the investigated genotypes, the new breeding genotype G12 showed a high drought tolerance and yield performance under both conditions. Hence, this genotype can be a candidate for further multi-years and locations test as recommended for cultivation under rainfed conditions in arid and semi-arid regions.


Agronomy ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 144 ◽  
Author(s):  
Rosa Mérida-García ◽  
Alison R. Bentley ◽  
Sergio Gálvez ◽  
Gabriel Dorado ◽  
Ignacio Solís ◽  
...  

Final grain production and quality in durum wheat are affected by biotic and abiotic stresses. The association mapping (AM) approach is useful for dissecting the genetic control of quantitative traits, with the aim of increasing final wheat production under stress conditions. In this study, we used AM analyses to detect quantitative trait loci (QTL) underlying agronomic and quality traits in a collection of 294 elite durum wheat lines from CIMMYT (International Maize and Wheat Improvement Center), grown under different water regimes over four growing seasons. Thirty-seven significant marker-trait associations (MTAs) were detected for sedimentation volume (SV) and thousand kernel weight (TKW), located on chromosomes 1B and 2A, respectively. The QTL loci found were then confirmed with several AM analyses, which revealed 12 sedimentation index (SDS) MTAs and two additional loci for SV (4A) and yellow rust (1B). A candidate gene analysis of the identified genomic regions detected a cluster of 25 genes encoding blue copper proteins in chromosome 1B, with homoeologs in the two durum wheat subgenomes, and an ubiquinone biosynthesis O-methyltransferase gene. On chromosome 2A, several genes related to photosynthetic processes and metabolic pathways were found in proximity to the markers associated with TKW. These results are of potential use for subsequent application in marker-assisted durum wheat-breeding programs.


Foods ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 315
Author(s):  
Sara Graziano ◽  
Nelson Marmiroli ◽  
Giovanna Visioli ◽  
Mariolina Gullì

Durum wheat is an important food source in Mediterranean countries, and Italy is the major producer of durum wheat in Europe. The quality of durum wheat flours depends on the type and amount of gluten proteins and starch while flour nutritional value rests on metabolite contents such as polyphenols. In this work, two Italian cultivars, Iride and Svevo, were analyzed for two years (2016–2017) in four Italian regions to explore how the environment affects: (i) reserve proteome; (ii) starch content and composition; and (iii) free, conjugated, bound phenolics and antioxidant capacity. The impact of environmental and meteorological conditions was significant for many traits. Regardless of the cultivation site, in 2017, a year with less rainfall and a higher temperature during grain filling, there was an increase in low molecular weight glutenins, in the glutenin/gliadin ratio and in the A-type starch granules size, all parameters of higher technological quality. In the same year, the cultivars showed higher amounts of polyphenols and antioxidant capacity. In conclusion, the two wheat cultivars, selected for their medium to high yield and their good quality, had higher performances in 2017 regardless of their sowing locations.


Sign in / Sign up

Export Citation Format

Share Document