scholarly journals Eustress with H2O2 Facilitates Plant Growth by Improving Tolerance to Salt Stress in Two Wheat Cultivars

Plants ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 303 ◽  
Author(s):  
Arafat Abdel Latef ◽  
Mojtaba Kordrostami ◽  
Ali Zakir ◽  
Hoida Zaki ◽  
Osama Saleh

In this study, the positive role of hydrogen peroxide (H2O2) pretreatment in mitigating the adverse impacts of seawater stress has been evaluated in two wheat (Triticum aestivum L.) cultivars, namely Gemmiza 11 as a salt-sensitive and Misr 1 as a salt-tolerant cultivar, with contrasting phenotypes in response to the salinity stress. Under normal conditions, wheat seeds eustress with H2O2 have shown significant effects on the improvement of plant growth parameters, such as dry weight and root and shoot lengths. Under salt stress conditions, seeds eustress with H2O2 have shown a reduction in damage to plant growth and physiological parameters as compared to the seeds kept as un-primed in both wheat cultivars. In addition, eustress of seeds with H2O2 has induced an increment in the pigments content, proline level and mineral uptake (K+, Ca2+ and Mg2+). Moreover, seeds eustress with H2O2 have shown significant decrement in Na+ content uptake in plants and that subsequently reduced lipid peroxidation. Seawater stress has increased the activity of the antioxidant system based on catalase (CAT), peroxidase (POD) and ascorbate peroxidase (APX) in both cultivars, except POD in Gemmiza 11. Similarly, the application of H2O2 has further enhanced the activity of the antioxidant system in stressed plants and this enhancement of the antioxidant system further reduced Na+ content in plants and subsequently increased the growth parameters. Results of inter-simple sequence repeat (ISSR) markers have shown clear differentiation among the treatments and have provided strong evidence in support of the hypothesis proposed in this study that H2O2 eustress improves seed tolerance and enhances plant growth parameters under seawater stress.

Genetika ◽  
2016 ◽  
Vol 48 (1) ◽  
pp. 233-248
Author(s):  
R. El-Bakatoushi ◽  
A. Elframawy

Plant growth and the expression of two transporter genes; PoHKT1 and PoVHA transcripts in root and shoot tissues were studied under salt stress of three Portulaca oleracea s.l. taxa. The study showed no significant differences in ratios between root lengths in saline and non-saline treatments of the three taxa, which was correlated with a clear down-regulation of the PoHKT1 transcripts in the root after 150mM NaCl. All measured growth parameters except root length increased in P. oleraceae, decreased in P. granulatostellulata and remain unchanged after 100mM NaCl in P. nitida compared to control under saline conditions. The result was consistent with the type of taxon which had significant effect on the shoot length, number of leaves and dry weight (P< 0.05). All measured growth parameters except root length showed a significant negative correlation with the shoot fold change of PoHKT1 transcripts (r = -0.607, -0.693 and -0.657 respectively). The regulation of PoVHA in root and shoot tissues in the three taxa are significantly different. Under salt stress, both decreased uptake of Na+ into the cytosol by decreasing the expression of PoHKT1 and increased vascular compartmentalization ability of Na+ by inducing the expression of PoVHA seem to work more efficiently in P. oleraceae and P. nitida than in P. granulato-stellulata.


2021 ◽  
Vol 64 (1) ◽  
Author(s):  
Dong Gun Lee ◽  
Ji Min Lee ◽  
Chang Geun Choi ◽  
Hojoung Lee ◽  
Jun Cheol Moon ◽  
...  

AbstractSalinity stress is a serious abiotic stress that affects crop quality and production. Rhizospheric microbes have immense potential in synthesizing and releasing various compounds that regulate plant growth and soil physicochemical properties. The aim of the present study was to evaluate the efficacy of indole-3-acetic acid (IAA)-producing rhizobacteria as biofertilizers under salt stress. Among the isolated strains from various soil samples, Bacillus megaterium strain PN89 with multifarious plant growth-promoting traits was selected and used as a monoculture and co-culture with two other standard strains. The plant promoting activity was evaluated using the paper towel method and pot test to observe the effects on the early stage and vegetative growth of wheat (Triticum aestivum L.). The treatment using PGPR strain presented noticeable but varying effects on plant growth under salt stress, that is, PGPR treatment often displayed a significant increase in germination percentage, root and shoot length, and other growth parameters of wheat compared to those in the non-inoculated control. Thus, these results suggest that B. megaterium PN89 can be applied as a bio-fertilizer to alleviate salt stress in T. aestivum.


2020 ◽  
Vol 13 (2) ◽  
pp. 83-92 ◽  
Author(s):  
A. Adam

SummaryEnhancement of the resistance level in plants by rhizobacteria has been proven in several pathosystems. This study investigated the ability of four rhizobacteria strains (Pseudomonas putida BTP1 and Bacillus subtilis Bs2500, Bs2504 and Bs2508) to promote the growth in three barley genotypes and protect them against Cochliobolus sativus. Our results demonstrated that all tested rhizobacteria strains had a protective effect on barley genotypes Arabi Abiad, Banteng and WI2291. However, P. putida BTP1 and B. subtilis Bs2508 strains were the most effective as they reduced disease incidence by 53 and 38% (mean effect), respectively. On the other hand, there were significant differences among the rhizobacteria-treated genotypes on plant growth parameters, such as wet weight, dry weight, plant height and number of leaves. Pseudomonas putida BTP1 strain was the most effective as it significantly increased plant growth by 15-32%. In addition, the susceptible genotypes Arabi Abiad and WI2291 were the most responsive to rhizobacteria. This means that these genotypes have a high potential for increase of their resistance against the pathogen and enhancement of plant growth after the application of rhizobacteria. Consequently, barley seed treatment with the tested rhizobacteria could be considered as an effective biocontrol method against C. sativus.


Author(s):  
Mahmoud Ahmed Touny El-Dabaa ◽  
Hassan Abd-El-Khair

Abstract Background Orobanche crenata is an obligate root parasite belonging to Orbanchaceae. Broomrape causes great damage to the faba bean. Several attempts were applied for controlling parasitic weeds. So, the aim of this work is to study the application of Trichoderma spp. as well as three rhizobacteria species in comparison to herbicidal effect of Glyphosate (Glialka 48% WSC) for controlling broomrape infesting faba bean (Vicia faba). Materials and methods Three pot experiments were carried out in the greenhouse of the National Research Centre, Dokki, Giza, Egypt during two successive winter seasons. Trichoderma inocula were adjusted to 3.6 × 108 propagules/ml and the bacterium inocula were adjusted at 107–109 colony-forming unit (CFU)/ml. All treatments were applied, before 1 week of sowing, at rate of 50 ml per pot in experiments I and II, while 100 ml per pot in experiment III. Results Trichoderma spp. (T. harzianum, T. viride and T. vierns) as well as three rhizobacteria species (Pseudomonas fluorescens, Bacillus subtilis and Bacillus pumilus) enhanced the growth parameters in faba bean plants, i.e. shoot length, shoot fresh weight, shoot dry weight and leaf number in the first experiment when applied without O. crenata infection. In the second experiment, all bio-control could protect plants against O. crenata infection, where it had better juvenile number reduction, than glyphosate after 2 months of application. Both B. subtilis and B. pumilus had the highest reduction to juvenile fresh weight, while their effect was equal to herbicide for juvenile dry weight, respectively. The bio-control agents had high effects until the 4th month, but it was less than that of the herbicide. In experiment III, the bio-control agents could highly reduce the juvenile parameters after 2 months, as well as juvenile fresh weight and juvenile dry weight after 4 months, than the herbicide, respectively. The bio-control agents were effective until 6 months, but less than the herbicide effect. All bio-control treatments highly increased the plant growth parameters, than the herbicide. Conclusion The application of Trichoderma spp. as well as rhizobacteria species could play an important role in controlling broomrape in faba bean as a natural bioherbicide.


2016 ◽  
Vol 2 (1) ◽  
pp. 74-81 ◽  
Author(s):  
Sakil Mahmud ◽  
Shayla Sharmin ◽  
Bishan Lal Das Chowdhury ◽  
Mohammad Anowar Hossain ◽  
Muhammad Javidul Haque Bhuiyan

To explore the possibility of using methyl jasmonate (MeJA) for alleviation of salt stress, the present study was conducted where six rice varieties (BRRI dhan31, BRRI dhan46, Gota, Kajalsail, Pokkali and Pengek) were grown in non saline (0 dSm-1), saline (12 dSm-1), saline (12 dSm-1) + 10 ?M MeJA and saline (12 dSm-1) + 20 ?M MeJA conditions at germination stage (till the 9 days). MeJA was applied by imbibing seeds in it for 24 hours. To evaluate the effect of MeJA on saline stressed plant at germination stage, change in growth parameters namely germination percentage, shoot and root length, fresh and dry wt. of shoot, fresh and dry wt. of root and biochemical component- activity of alpha-amylase were monitored. Salinity had a minimum effect on final germination percentage (FGP) of rice varieties, but delayed in attaining it. MeJA had least positive effect. Salinity significantly reduced the shoot and root length, fresh and dry weight of all the varieties. MeJA had more decreasing effect in susceptible varieties while increasing effect in moderately tolerant and tolerant. Activity of alpha-amylase in germinated seed varied from 0.051 mg to 0.111 mg mal./mg tissue. At 12dSm-1 salinity, susceptible and moderately tolerant varieties showed significant reduction but tolerant showed significant increase. MeJA intensified the negative effect further in susceptible varieties. In tolerant and moderately tolerant varieties, increment in activity took place and 10 ?M had a better effect over 20 ?M MeJA.Asian J. Med. Biol. Res. March 2016, 2(1): 74-81


2015 ◽  
Vol 67 (3) ◽  
pp. 993-1000 ◽  
Author(s):  
Lydia Shtereva ◽  
Roumiana Vassilevska-Ivanova ◽  
Tanya Karceva

An experiment was carried out hydroponically under laboratory conditions to investigate the effect of salt stress on several physiological and biochemical parameters of three sweet corn (Zea mays L. var. saccharata) genotypes: lines 6-13, C-6 (pollen source) and their heterotic F1 hybrid ?Zaharina?. The degree of salinity tolerance among these genotypes was evaluated at three different sodium chloride (NaCl) concentrations: 0 mM, 100 mM, 125 mM and 150 mM. Seed germination, plant growth and biochemical stress determining parameters such as malondialdehyde (MDA), proline content and hydrogen peroxide (H2O2) levels were compared between seedlings of lines and hybrid. The obtained results indicated that both lines and hybrid have similar responses at different salinity levels for all examined traits. All the seedlings? growth parameters, such as germination percentage, root length, shoot length, root and shoot fresh and dry weight, decreased with increasing salinity level. MDA, proline and H2O2 increased at different saline conditions in comparison to the control. Based on the results, of the three genotypes examined, the hybrid Zaharina, followed by line C-6, was more salt-sensitive than line 6-13 in salt stress condition.


2020 ◽  
Vol 8 (4) ◽  
pp. 496
Author(s):  
Dilfuza Egamberdieva ◽  
Vyacheslav Shurigin ◽  
Burak Alaylar ◽  
Hua Ma ◽  
Marina E. H. Müller ◽  
...  

The effects of biochar on plant growth vary depending on the applied biochar type, study site environmental conditions, microbial species, and plant–microbial interactions. The objectives of the present study were therefore to assess 1) the response of growth parameters of lupin and root disease incidence to the application of three biochar types in a loamy sandy soil, and 2) the role of endophytic bacteria in biological control of root rot disease incidence in lupin after the amendment of soil with different biochar types. As biochar types we tested (i) hydrochar (HTC) from maize silage, (ii) pyrolysis char from maize (MBC), and (iii) pyrolysis char from wood (WBC) at three different concentrations (1%, 2%, and 3% of char as soil amendments). There were no significant effects in lupin shoot and root growth in soils amended with WBC at any of the concentrations. MBC did not affect plant growth except for root dry weight at 2% MBC. HTC char at 2% concentration, significantly increased the root dry weight of lupin by 54–75%, and shoot dry weight by 21–25%. Lupin plants grown in soil amended with 2% and 3% WBC and MBC chars showed 40–50% and 10–20% disease symptoms, respectively. Plants grown in soil without biochar and with HTC char were healthy, and no disease incidence occurred. Pseudomonas putida L2 and Stenotrophomonas pavanii L8 isolates demonstrated a disease reduction compared to un-inoculated plants under MBC and WBC amended soil that was infested with Fusarium solani.


2010 ◽  
Vol 56 (No. 12) ◽  
pp. 570-573 ◽  
Author(s):  
D. Egamberdieva

In this study the plant growth-promoting bacteria were analysed for their growth-stimulating effects on two wheat cultivars. The investigations were carried out in pot experiments using calcareous soil. The results showed that bacterial strains Pseudomonas spp. NUU1 and P. fluorescens NUU2 were able to colonize the rhizosphere of both wheat cultivars. Their plant growth-stimulating abilities were affected by wheat cultivars. The bacterial strains Pseudomonas sp. NUU1 and P. fluorescens NUU2 significantly stimulated the shoot and root length and dry weight of wheat cv. Turon, whereas cv. Residence was less affected by bacterial inoculation. The results of our study suggest that inoculation of wheat with Pseudomonas strains can improve plant growth in calcareous soil and it depends upon wheat cultivars. Prior to a selection of good bacterial inoculants, it is recommended to select cultivars that benefit from association with these bacteria.


2019 ◽  
Vol 48 (4) ◽  
pp. 1091-1097
Author(s):  
Summi Buzdar ◽  
Ayesha Mushtaq ◽  
Sabeena Rizwan ◽  
Uzma Jabeen ◽  
Farrukh Bashir ◽  
...  

Priming effect of silicon sources (silica gel and sodium silicate) on the seeds of four wheat cultivars of Balochistan was studied to determine their effectiveness in increasing relative salt tolerance. The study depicts that all priming treatments of silicon sources (except sodium silicate 2%) enhanced germination and reduced mean germination time (MGT) of seeds in comparison to the control i.e. hydropriming. After germination, the young seedlings were grown in hydroponics in Hoagland’s culture solution under controlled conditions in non-saline and saline (100 mM NaCl) environments. All the growth parameters (root and shoot length, fresh and dry weights of plants and chlorophyll content of leaves) severely reduced in hydroprimed seeds under saline environments, although increased by priming seeds with silicon sources. Thus silica compounds have potential effects to break the seed dormancy and improve the growth of wheat under salinity stress.


2012 ◽  
Vol 34 (6) ◽  
pp. 2349-2358 ◽  
Author(s):  
Lucrezia Sergio ◽  
Angela De Paola ◽  
Vito Cantore ◽  
Maria Pieralice ◽  
Nicholas Anthony Cascarano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document