scholarly journals Virulent Shigella flexneri subverts the host innate immune response through manipulation of antimicrobial peptide gene expression

2008 ◽  
Vol 205 (5) ◽  
pp. 1121-1132 ◽  
Author(s):  
Brice Sperandio ◽  
Béatrice Regnault ◽  
Jianhua Guo ◽  
Zhi Zhang ◽  
Samuel L. Stanley ◽  
...  

Antimicrobial factors are efficient defense components of the innate immunity, playing a crucial role in the intestinal homeostasis and protection against pathogens. In this study, we report that upon infection of polarized human intestinal cells in vitro, virulent Shigella flexneri suppress transcription of several genes encoding antimicrobial cationic peptides, particularly the human β-defensin hBD-3, which we show to be especially active against S. flexneri. This is an example of targeted survival strategy. We also identify the MxiE bacterial regulator, which controls a regulon encompassing a set of virulence plasmid-encoded effectors injected into host cells and regulating innate signaling, as being responsible for this dedicated regulatory process. In vivo, in a model of human intestinal xenotransplant, we confirm at the transcriptional and translational level, the presence of a dedicated MxiE-dependent system allowing S. flexneri to suppress expression of antimicrobial cationic peptides and promoting its deeper progression toward intestinal crypts. We demonstrate that this system is also able to down-regulate additional innate immunity genes, such as the chemokine CCL20 gene, leading to compromised recruitment of dendritic cells to the lamina propria of infected tissues. Thus, S. flexneri has developed a dedicated strategy to weaken the innate immunity to manage its survival and colonization ability in the intestine.

2014 ◽  
Vol 21 (11) ◽  
pp. 1550-1559 ◽  
Author(s):  
Benjamin J. Koestler ◽  
Sergey S. Seregin ◽  
David P. W. Rastall ◽  
Yasser A. Aldhamen ◽  
Sarah Godbehere ◽  
...  

ABSTRACTThe bacterial second messenger cyclic di-GMP (c-di-GMP) stimulates inflammation by initiating innate immune cell recruitment and triggering the release of proinflammatory cytokines and chemokines. These properties make c-di-GMP a promising candidate for use as a vaccine adjuvant, and numerous studies have demonstrated that administration of purified c-di-GMP with different antigens increases protection against infection in animal models. Here, we have developed a novel approach to produce c-di-GMP inside host cells as an adjuvant to exploit a host-pathogen interaction and initiate an innate immune response. We have demonstrated that c-di-GMP can be synthesizedin vivoby transducing a diguanylate cyclase (DGC) gene into mammalian cells using an adenovirus serotype 5 (Ad5) vector. Expression of DGC led to the production of c-di-GMPin vitroandin vivo, and this was able to alter proinflammatory gene expression in murine tissues and increase the secretion of numerous cytokines and chemokines when administered to animals. Furthermore, coexpression of DGC modestly increased T-cell responses to aClostridium difficileantigen expressed from an adenovirus vaccine, although no significant differences in antibody titers were observed. This adenovirus c-di-GMP delivery system offers a novel method to administer c-di-GMP as an adjuvant to stimulate innate immunity during vaccination.


2021 ◽  
Vol 118 (26) ◽  
pp. e2017130118
Author(s):  
Demba Sarr ◽  
Aaron D. Gingerich ◽  
Nuha Milad Asthiwi ◽  
Faris Almutairi ◽  
Giuseppe A. Sautto ◽  
...  

Dual oxidase 1 (DUOX1) is an NADPH oxidase that is highly expre-ssed in respiratory epithelial cells and produces H2O2 in the airway lumen. While a line of prior in vitro observations suggested that DUOX1 works in partnership with an airway peroxidase, lactoperoxidase (LPO), to produce antimicrobial hypothiocyanite (OSCN−) in the airways, the in vivo role of DUOX1 in mammalian organisms has remained unproven to date. Here, we show that Duox1 promotes antiviral innate immunity in vivo. Upon influenza airway challenge, Duox1−/− mice have enhanced mortality, morbidity, and impaired lung viral clearance. Duox1 increases the airway levels of several cytokines (IL-1β, IL-2, CCL1, CCL3, CCL11, CCL19, CCL20, CCL27, CXCL5, and CXCL11), contributes to innate immune cell recruitment, and affects epithelial apoptosis in the airways. In primary human tracheobronchial epithelial cells, OSCN− is generated by LPO using DUOX1-derived H2O2 and inactivates several influenza strains in vitro. We also show that OSCN− diminishes influenza replication and viral RNA synthesis in infected host cells that is inhibited by the H2O2 scavenger catalase. Binding of the influenza virus to host cells and viral entry are both reduced by OSCN− in an H2O2-dependent manner in vitro. OSCN− does not affect the neuraminidase activity or morphology of the influenza virus. Overall, this antiviral function of Duox1 identifies an in vivo role of this gene, defines the steps in the infection cycle targeted by OSCN−, and proposes that boosting this mechanism in vivo can have therapeutic potential in treating viral infections.


2000 ◽  
Vol 68 (6) ◽  
pp. 3242-3250 ◽  
Author(s):  
Iharilalao Dubail ◽  
Patrick Berche ◽  
Alain Charbit

ABSTRACT Listeria monocytogenes is a facultative intracellular gram-positive bacterium capable of growing in the cytoplasm of infected host cells. Bacterial escape from the phagosomal vacuole of infected cells is mainly mediated by the pore-forming hemolysin listeriolysin O (LLO) encoded by hly. LLO-negative mutants of L. monocytogenes are avirulent in the mouse model. We have developed a genetic system with hly as a reporter gene allowing the identification of both constitutive and in vivo-inducible promoters of this pathogen. Genomic libraries were created by randomly inserting L. monocytogenes chromosomal fragments upstream of the promoterless hly gene cloned into gram-positive and gram-negative shuttle vectors and expressed in an LLO-negative mutant strain. With this hly-based promoter trap system, combined with access to the L. monocytogenes genome database, we identified 20 in vitro-transcribed genes, including genes encoding (i) p60, a previously known virulence gene, (ii) a putative new hemolysin, and (iii) two proteins of the general protein secretion pathway. By using the hly-based system as an in vivo expression technology tool, nine in vivo-induced loci of L. monocytogenes were identified, including genes encoding (i) the previously known in vivo-inducible phosphatidylinositol phospholipase C and (ii) a putative N-acetylglucosamine epimerase, possibly involved in teichoic acid biosynthesis. The use of hly as a reporter is a simple and powerful alternative to classical methods for transcriptional analysis to monitor promoter activity in L. monocytogenes.


1998 ◽  
Vol 66 (9) ◽  
pp. 4237-4243 ◽  
Author(s):  
Beth A. McCormick ◽  
Andrew M. Siber ◽  
Anthony T. Maurelli

ABSTRACT Attachment of an array of enteric pathogens to epithelial surfaces is accompanied by recruitment of polymorphonuclear leukocytes (PMN) across the intestinal epithelium. In this report, we examine howShigella-intestinal epithelium interactions evoke the mucosal inflammatory response. We modeled these interactions in vitro by using polarized monolayers of the human intestinal epithelial cell line, T84, isolated human PMNs, and Shigella flexneri. We show that Shigella attachment to T84-cell basolateral membranes was a necessary component in the signaling cascade for induction of basolateral-to-apical directed transepithelial PMN migration, the direction of PMN transepithelial migration in vivo. In contrast, attachment of Shigella to the T84-cell apical membrane failed to stimulate a directed PMN transepithelial migration response. Importantly, the ability of Shigella to induce PMN migration across epithelial monolayers was dependent on the presence of the 220-kb virulence plasmid. Moreover, examination ofShigella genes necessary to signal subepithelial neutrophils established the requirement of a functional type III secretion system. Our results indicate that the ability ofShigella to elicit transepithelial signaling to neutrophils from the basolateral membrane of epithelial cells represents a mechanism involved in Shigella-elicited enteritis in humans.


2012 ◽  
Vol 81 (1) ◽  
pp. 154-165 ◽  
Author(s):  
Cristina Núñez-Hernández ◽  
Alberto Tierrez ◽  
Álvaro D. Ortega ◽  
M. Graciela Pucciarelli ◽  
Marta Godoy ◽  
...  

Genome-wide expression analyses have provided clues on howSalmonellaproliferates inside cultured macrophages and epithelial cells. However,in vivostudies show thatSalmonelladoes not replicate massively within host cells, leaving the underlying mechanisms of such growth control largely undefined.In vitroinfection models based on fibroblasts or dendritic cells reveal limited proliferation of the pathogen, but it is presently unknown whether these phenomena reflect events occurringin vivo. Fibroblasts are distinctive, since they represent a nonphagocytic cell type in whichS. entericaserovar Typhimurium actively attenuates intracellular growth. Here, we show in the mouse model thatS. Typhimurium restrains intracellular growth within nonphagocytic cells positioned in the intestinal lamina propria. This response requires a functional PhoP-PhoQ system and is reproduced in primary fibroblasts isolated from the mouse intestine. The fibroblast infection model was exploited to generate transcriptome data, which revealed that ∼2% (98 genes) of theS. Typhimurium genome is differentially expressed in nongrowing intracellular bacteria. Changes include metabolic reprogramming to microaerophilic conditions, induction of virulence plasmid genes, upregulation of the pathogenicity islands SPI-1 and SPI-2, and shutdown of flagella production and chemotaxis. Comparison of relative protein levels of several PhoP-PhoQ-regulated functions (PagN, PagP, and VirK) in nongrowing intracellular bacteria and extracellular bacteria exposed to diverse PhoP-PhoQ-inducing signals denoted a regulation responding to acidic pH. These data demonstrate thatS. Typhimurium restrains intracellular growthin vivoand support a model in which dormant intracellular bacteria could sense vacuolar acidification to stimulate the PhoP-PhoQ system for preventing intracellular overgrowth.


2020 ◽  
Author(s):  
Avik Sotira Scientific

UNSTRUCTURED Coronavirus disease 2019 (COVID-19) is a severe acute respiratory syndrome (SARS) caused by a virus known as SARS-Coronavirus 2 (SARS-CoV2). Without a targeted-medicine, this disease has been causing a massive humanitarian crisis not only in terms of mortality, but also imposing a lasting damage to social life and economic progress of humankind. Therefore, an immediate therapeutic strategy needs to be intervened to mitigate this global crisis. Here, we report a novel KepTide™ (Knock-End Peptide) therapy that nullifies SARS-CoV2 infection. SARS-CoV2 employs its surface glycoprotein “spike” (S-glycoprotein) to interact with angiotensin converting enzyme-2 (ACE-2) receptor for its infection in host cells. Based on our in-silico-based homology modeling study validated with a recent X-ray crystallographic structure (PDB ID:6M0J), we have identified that a conserved motif of S-glycoprotein that intimately engages multiple hydrogen-bond (H-bond) interactions with ACE-2 enzyme. Accordingly, we designed a peptide, termed as ACIS (ACE-2 Inhibitory motif of Spike), that displayed significant affinity towards ACE-2 enzyme as confirmed by biochemical assays such as BLItz and fluorescence polarization assays. Interestingly, more than one biochemical modifications were adopted in ACIS in order to enhance the inhibitory action of ACIS and hence called as KEpTide™. Consequently, a monolayer invasion assay, plaque assay and dual immunofluorescence analysis further revealed that KEpTide™ efficiently mitigated the infection of SARS-CoV2 in vitro in VERO E6 cells. Finally, evaluating the relative abundance of ACIS in lungs and the potential side-effects in vivo in mice, our current study discovers a novel KepTide™ therapy that is safe, stable, and robust to attenuate the infection of SARS-CoV2 virus if administered intranasally. INTERNATIONAL REGISTERED REPORT RR2-https://doi.org/10.1101/2020.10.13.337584


2021 ◽  
Vol 12 ◽  
pp. 204173142098752
Author(s):  
Nadiah S Sulaiman ◽  
Andrew R Bond ◽  
Vito D Bruno ◽  
John Joseph ◽  
Jason L Johnson ◽  
...  

Human saphenous vein (hSV) and synthetic grafts are commonly used conduits in vascular grafting, despite high failure rates. Decellularising hSVs (D-hSVs) to produce vascular scaffolds might be an effective alternative. We assessed the effectiveness of a detergent-based method using 0% to 1% sodium dodecyl sulphate (SDS) to decellularise hSV. Decellularisation effectiveness was measured in vitro by nuclear counting, DNA content, residual cell viability, extracellular matrix integrity and mechanical strength. Cytotoxicity was assessed on human and porcine cells. The most effective SDS concentration was used to prepare D-hSV grafts that underwent preliminary in vivo testing using a porcine carotid artery replacement model. Effective decellularisation was achieved with 0.01% SDS, and D-hSVs were biocompatible after seeding. In vivo xeno-transplantation confirmed excellent mechanical strength and biocompatibility with recruitment of host cells without mechanical failure, and a 50% patency rate at 4-weeks. We have developed a simple biocompatible methodology to effectively decellularise hSVs. This could enhance vascular tissue engineering toward future clinical applications.


2021 ◽  
Vol 22 (13) ◽  
pp. 7099
Author(s):  
Pradeep Kumar Kopparapu ◽  
Meghshree Deshmukh ◽  
Zhicheng Hu ◽  
Majd Mohammad ◽  
Marco Maugeri ◽  
...  

Staphylococcal aureus (S. aureus), a Gram-positive bacteria, is known to cause various infections. Extracellular vesicles (EVs) are a heterogeneous array of membranous structures secreted by cells from all three domains of life, i.e., eukaryotes, bacteria, and archaea. Bacterial EVs are implied to be involved in both bacteria–bacteria and bacteria–host interactions during infections. It is still unclear how S. aureus EVs interact with host cells and induce inflammatory responses. In this study, EVs were isolated from S. aureus and mutant strains deficient in either prelipoprotein lipidation (Δlgt) or major surface proteins (ΔsrtAB). Their immunostimulatory capacities were assessed both in vitro and in vivo. We found that S. aureus EVs induced pro-inflammatory responses both in vitro and in vivo. However, this activity was dependent on lipidated lipoproteins (Lpp), since EVs isolated from the Δlgt showed no stimulation. On the other hand, EVs isolated from the ΔsrtAB mutant showed full immune stimulation, indicating the cell wall anchoring of surface proteins did not play a role in immune stimulation. The immune stimulation of S. aureus EVs was mediated mainly by monocytes/macrophages and was TLR2 dependent. In this study, we demonstrated that not only free Lpp but also EV-imbedded Lpp had high pro-inflammatory activity.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Amber R Paulson ◽  
Maureen O’Callaghan ◽  
Xue-Xian Zhang ◽  
Paul B Rainey ◽  
Mark R H Hurst

Abstract The function of microbes can be inferred from knowledge of genes specifically expressed in natural environments. Here, we report the in vivo transcriptome of the entomopathogenic bacterium Yersinia entomophaga MH96, captured during initial, septicemic, and pre-cadaveric stages of intrahemocoelic infection in Galleria mellonella. A total of 1285 genes were significantly upregulated by MH96 during infection; 829 genes responded to in vivo conditions during at least one stage of infection, 289 responded during two stages of infection, and 167 transcripts responded throughout all three stages of infection compared to in vitro conditions at equivalent cell densities. Genes upregulated during the earliest infection stage included components of the insecticidal toxin complex Yen-TC (chi1, chi2, and yenC1), genes for rearrangement hotspot element containing protein yenC3, cytolethal distending toxin cdtAB, and vegetative insecticidal toxin vip2. Genes more highly expressed throughout the infection cycle included the putative heat-stable enterotoxin yenT and three adhesins (usher-chaperone fimbria, filamentous hemagglutinin, and an AidA-like secreted adhesin). Clustering and functional enrichment of gene expression data also revealed expression of genes encoding type III and VI secretion system-associated effectors. Together these data provide insight into the pathobiology of MH96 and serve as an important resource supporting efforts to identify novel insecticidal agents.


2021 ◽  
Vol 2 (3) ◽  
pp. 100708
Author(s):  
Long Shen ◽  
Xiao Shan ◽  
Penghui Hu ◽  
Yanan Zhang ◽  
Zemin Ji ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document