scholarly journals Comparison of the Androgenic Response of Spring and Winter Wheat (Triticum aestivum L.)

Plants ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 49 ◽  
Author(s):  
Dorota Weigt ◽  
Angelika Kiel ◽  
Idzi Siatkowski ◽  
Joanna Zyprych-Walczak ◽  
Agnieszka Tomkowiak ◽  
...  

Androgenesis is potentially the most effective technique for doubled haploid production of wheat. It is not however widely used in breeding programmes due to its main limitation: the genotype dependence. Due to genetic differences between spring and winter wheat, it was assumed that both phenotypes are different in their capacity to conduct androgenesis. And so, the aim of this investigation was to verify the effectiveness of androgenesis induction and plant regeneration of spring and winter wheat genotypes while considering varying amounts of growth hormones in the induction medium. Fifteen genotypes of spring wheat and fifteen of winter wheat were used in the experiment. Six hundred anthers of each of the 30 genotypes were plated and analysed. Previous studies have allowed selection of the best medium for wheat androgenesis and a combination of growth hormones that are the most effective in stimulating microspore proliferation. Therefore, C17 induction media with two combinations of growth hormones were used: I—supplemented only by auxins (2,4-D and dicamba), and II—supplemented by auxin and cytokinin (2,4-D and kinetin). Data was recorded according to the efficiency of androgenic structure formation (ASF), green plant regeneration (GPR), and albino plant regeneration (APR). The results showed that the induction and regeneration of androgenesis in the spring wheat were more efficient than in the winter ones. The spring genotypes formed more androgenic structures and green plants on anthers plated on the medium supplemented only by auxins, in contrast to the winter genotypes which were better induced and regenerated on the medium supplemented by auxin and cytokinin. The study showed that to increase the efficiency of androgenesis, it is necessary to select appropriate factors such as concentration and type of hormones in medium composition, affecting the course of the culturing procedure according to the winter or spring phenotype of donor plants.

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1193
Author(s):  
Muhammad Sohail Saddiq ◽  
Shahid Iqbal ◽  
Muhammad Bilal Hafeez ◽  
Amir M. H. Ibrahim ◽  
Ali Raza ◽  
...  

Salinity is a leading threat to crop growth throughout the world. Salt stress induces altered physiological processes and several inhibitory effects on the growth of cereals, including wheat (Triticum aestivum L.). In this study, we determined the effects of salinity on five spring and five winter wheat genotypes seedlings. We evaluated the salt stress on root and shoot growth attributes, i.e., root length (RL), shoot length (SL), the relative growth rate of root length (RGR-RL), and shoot length (RGR-SL). The ionic content of the leaves was also measured. Physiological traits were also assessed, including stomatal conductance (gs), chlorophyll content index (CCI), and light-adapted leaf chlorophyll fluorescence, i.e., the quantum yield of photosystem II (Fv′/Fm′) and instantaneous chlorophyll fluorescence (Ft). Physiological and growth performance under salt stress (0, 100, and 200 mol/L) were explored at the seedling stage. The analysis showed that spring wheat accumulated low Na+ and high K+ in leaf blades compared with winter wheat. Among the genotypes, Sakha 8, S-24, W4909, and W4910 performed better and had improved physiological attributes (gs, Fv′/Fm′, and Ft) and seedling growth traits (RL, SL, RGR-SL, and RGR-RL), which were strongly linked with proper Na+ and K+ discrimination in leaves and the CCI in leaves. The identified genotypes could represent valuable resources for genetic improvement programs to provide a greater understanding of plant tolerance to salt stress.


1983 ◽  
Vol 63 (1) ◽  
pp. 299-301 ◽  
Author(s):  
S. FREYMAN ◽  
G. B. SCHAALJE

Where winter wheat (Triticum aestivum L. ’Norstar’) was worked-down on 1 May and the plots reseeded to spring wheat immediately, no detrimental effect on yield of spring wheat was found. However, delaying this action until 15 May reduced the yields of spring-seeded wheat because of the harmful effect of decomposing winter wheat and late seeding. Moisture depletion by winter wheat was eliminated as a causative effect by light irrigations during May. Yields of rapeseed (Brassica campestris L. ’Candle’) were not so severely reduced by worked-down winter wheat. The harmful effect was significant only with 30 May cultivation and seeding date.Key words: Phytotoxicity, Triticum aestivum, Brassica campestris, worked-down


Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 839
Author(s):  
Dorota Weigt ◽  
Idzi Siatkowski ◽  
Magdalena Magaj ◽  
Agnieszka Tomkowiak ◽  
Jerzy Nawracała

Ionic liquids are novel compounds with unique chemical and physical properties. They can be received based on synthetic auxins like 2,4-dichlorophenoxyacetic acid or dicamba, which are commonly used hormones in microspore embryogenesis. Nevertheless, ionic liquids have not been adapted in plant in vitro culture thus far. Therefore, we studied the impact of ionic liquids on the ability to undergo microspore embryogenesis in anther cultures of wheat. Two embryogenic and two recalcitrant genotypes were used for this study. Ten combinations of ionic liquids and 2,4-dichlorophenoxyacetic acid were added to the induction medium. In most cases, they stimulated induction of microspore embryogenesis and green plant regeneration more than a control medium supplemented with only 2,4-dichlorophenoxyacetic acid. Two treatments were the most favorable, resulting in over two times greater efficiency of microspore embryogenesis induction in comparison to the control. The effect of breaking down the genotype recalcitrance (manifested by green plant formation) was observed under the influence of 5 ionic liquids treatments. Summing up, ionic liquids had a positive impact on microspore embryogenesis induction and green plant regeneration, increasing the efficiency of these phenomena in both embryogenic and recalcitrant genotypes. Herbicidal ionic liquids can be successfully used in in vitro cultures.


Genetika ◽  
2016 ◽  
Vol 48 (3) ◽  
pp. 991-1001
Author(s):  
Dane Boshev ◽  
Mirjana Jankulovska ◽  
Sonja Ivanovska ◽  
Ljupcho Jankuloski

This study was conducted to evaluate 49 advanced lines of winter wheat (Triticum aestivum L.) for their morphoagronomic traits and to determine best criteria for selection of lines to be included in future breeding program. The material was assessed in two years experiment at two locations, using RCBD design with three replications. Ten quantitative traits: plant height, number of fertile tillers, spike length, number of spikelets per spike, number of grains per spike, weight of grain per spike and per plant, fertility, biological yield and harvest index were evaluated by PCA and two-way cluster analysis. Three main principal components were determined explaining 71.391% of the total variation among the genotypes. One third of the variation is explained by PC1 which reflects the genotype yield potential. PC2 and PC3 explained 25.22% and 15.49% of the total variance, mostly in relation to the plant height and spike components, respectively. Biplot graph revealed strongest positive association between spike length, number of spikelets and biological yield and between number of tillers, weight of grains per spike and per plant. Two-way cluster analysis resulted with a dendrogram with one solely separated genotype, superior for all traits and two main clusters of genotypes defined with wide genetic diversity especially between the groups within the second cluster. Genotypes with high values for specific traits will be included in the future breeding programmes. Classification of genotypes and the extend of variation among them illustrated on the heatmap has proved to be practical tool for selecting genotypes with desired traits in the early stages of the breeding process.


Author(s):  
Ankica Kondic-Spika ◽  
Borislav Kobiljski ◽  
Nikola Hristov

The objective of the study was to investigate efficiency of anther culture in the production of spontaneous double haploids from randomly selected heterozygous genotypes of wheat (Triticum aestivum L.). Anthers of 20 F1 wheat combinations were grown in vitro on a modified Potato-2 medium. All of the examined genotypes have shown the ability to produce pollen calluses as well as to regenerate green plants. On average for the whole experiment material, 47.2 calluses were produced per 100 cultured anthers. The green plant regeneration ranged from 0.8 to 13.4 green plants per spike, with an overall mean of 5.8. From the total of 582 regenerated green plants, 47.9% (279) were spontaneous double haploids. The final average yield from the study was 2.8 double haploids per spike.


2017 ◽  
Vol 68 (2) ◽  
pp. 101 ◽  
Author(s):  
Stanisław M. Samborski ◽  
Dariusz Gozdowski ◽  
Olga S. Walsh ◽  
Peter Kyveryga ◽  
Michał Stłpieł

Active optical sensors (AOSs) are used for in-season variable-rate application of nitrogen (N). The sensors measure crop reflectance expressed as vegetative indices (VIs). These are transformed into N recommendations during on-site calibration of AOSs—‘familiarising’ the sensors with the crop N status of the representative part of a field. The ‘drive-first’ method is often used by growers to calibrate AOSs. Due to large spatial variation of crop N status within fields, it is difficult to identify the most representative sample strip for AOS calibration. Seven site-years were used to evaluate the sensitivity of sensor-based N prescriptions for winter wheat (Triticum aestivum L.) to selection of sample strips for AOS calibration that fall into extreme, very low or very high values of 95th percentiles of amber normalised difference VI (NDVI) values. A Crop Circle ACS-210 sensor was used to collect canopy reflectance values, expressed as amber NDVI, at the beginning of wheat stem elongation. Our study showed that the sample-strip selection significantly affected sensor-based N prescriptions. The drive-first method may result in under- or over-applications of N and in lower N-use efficiency. One way to overcome this problem is to collect whole field NDVI values during pesticide application before sensor-based N application. The NDVI values from the entire field then can be used to choose the most representative sample strips for AOS calibration.


1991 ◽  
Vol 69 (5-6) ◽  
pp. 383-391 ◽  
Author(s):  
Jean Danyluk ◽  
Eric Rassart ◽  
Fathey Sarhan

Translatable messenger RNAs expression was compared in cold- and heat-stressed winter wheat (Triticum aestivum L. 'Fredrick' and 'Norstar') and spring wheat (T. aestivum L. 'Glenlea'). Polyadenylated RNA isolated from the crown and leaf tissues was translated in a wheat germ cell free system and the acidic and basic in vitro products were resolved by two-dimensional SDS–PAGE and autoradiography. The results showed that low temperature stress rapidly induced two groups of mRNAs. The first group was transient in nature and consists of 18 mRNAs that reached their highest levels of induction after 24 h of low temperature exposure and then decreased to undetectable levels. The second group consists of 53 mRNAs that were also induced or increased rapidly, but maintained their levels of expression during the 4 weeks required to induce freezing tolerance. Among those, at least 34 were expressed at higher levels in the freezing tolerant winter wheat compared with the less tolerant spring wheat. This suggests a possible relation between the expression of these mRNAs and the capacity of each genotype to develop freezing tolerance. In the case of heat shock, 50 mRNAs were induced or increased after 3 h at 40 °C. Among these, the expression of only six mRNAs was altered in a similar manner in the three genotypes by both treatments. The remaining mRNAs code for typical heat shock proteins which are different from those induced by low temperature. None of these mRNAs has been associated with the development of freezing tolerance. These results suggest that heat and cold stress are controlled by different genetic systems.Key words: wheat, mRNAs, proteins, low temperature, heat stress.


2013 ◽  
Vol 93 (2) ◽  
pp. 261-270 ◽  
Author(s):  
R. B. Irvine ◽  
G. P. Lafond ◽  
W. May ◽  
H. R. Kutcher ◽  
G. W. Clayton ◽  
...  

Irvine, B. R., Lafond, G. P., May, W., Kutcher, H. R., Clayton, G. W., Harker, K. N., Turkington, T. K. and Beres, B. L. 2013. Stubble options for winter wheat in the Black soil zone of western Canada. Can. J. Plant Sci. 93: 261–270. Winter wheat (Triticum aestivum L.) production has yet to reach its full potential in the Canadian prairies. Alternative stubble types are needed to help overcome the challenge of timely planting of winter wheat in late-maturing canola (Brassica napus L.) fields. A study was conducted in the prairie provinces of Canada to determine ideal stubble types for winter wheat and select spring cereals grown in the Black soil zone. Spring wheat (Triticum aestivum L.), canola, pea (Pisum sativum L.), barley grain or silage (Hordeum vulgare L.), and oat (Avena sativa L.) stubbles were established at four locations in western Canada. A new study area was established at each location for 3 yr. In the year following establishment, winter wheat, hard red spring wheat, barley, and oats were grown on each stubble type at each study area. Winter wheat and spring cereal crops often yielded best and had greater grain protein concentration on barley silage, pea, and canola stubbles relative to other stubble types. The yield and grain protein concentration of spring cereals was best when grown on pea stubble. Winter wheat production attributes varied most among site by crop combinations, and further investigation indicated the source of this variability may be from winter wheat plantings on canola and pea stubble. Among the optimal stubbles, less variable results were observed when winter wheat was grown on barley silage stubble, suggesting proper crop residue management would reduce the variability observed in canola and pea stubble. Our results suggest stubble alternatives to canola are available for winter wheat plantings in western Canada.


Sign in / Sign up

Export Citation Format

Share Document