scholarly journals Plant Viruses Infecting Solanaceae Family Members in the Cultivated and Wild Environments: A Review

Plants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 667 ◽  
Author(s):  
Richard Hančinský ◽  
Daniel Mihálik ◽  
Michaela Mrkvová ◽  
Thierry Candresse ◽  
Miroslav Glasa

Plant viruses infecting crop species are causing long-lasting economic losses and are endangering food security worldwide. Ongoing events, such as climate change, changes in agricultural practices, globalization of markets or changes in plant virus vector populations, are affecting plant virus life cycles. Because farmer’s fields are part of the larger environment, the role of wild plant species in plant virus life cycles can provide information about underlying processes during virus transmission and spread. This review focuses on the Solanaceae family, which contains thousands of species growing all around the world, including crop species, wild flora and model plants for genetic research. In a first part, we analyze various viruses infecting Solanaceae plants across the agro-ecological interface, emphasizing the important role of virus interactions between the cultivated and wild zones as global changes affect these environments on both local and global scales. To cope with these changes, it is necessary to adjust prophylactic protection measures and diagnostic methods. As illustrated in the second part, a complex virus research at the landscape level is necessary to obtain relevant data, which could be overwhelming. Based on evidence from previous studies we conclude that Solanaceae plant communities can be targeted to address complete life cycles of viruses with different life strategies within the agro-ecological interface. Data obtained from such research could then be used to improve plant protection methods by taking into consideration environmental factors that are impacting the life cycles of plant viruses.

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1451
Author(s):  
Anne-Katrin Kersten ◽  
Sabrina Scharf ◽  
Martina Bandte ◽  
Peer Martin ◽  
Peter Meurer ◽  
...  

Texture softening of pickled cucumbers does not meet consumers’ quality expectations and leads to economic losses. The factor(s) triggering this phenomenon is still unknown. We investigated the importance of plant viruses such as Cucumber green mottle mosaic tobamovirus (CGMMV) and Zucchini yellow mosaic potyvirus (ZYMV) in the context of softening of pickles. Cucumber plants (Cucumis sativus) were infected by mechanical inoculation, grown under greenhouse conditions and tested positive for the viral infection by ELISA. The severity of virus infection was reflected in yield and symptom expression. Histological and morphological alterations were observed. All fruits were pasteurized, separately stored in jars and subjected to texture measurements after four, six and 12 months. CGMMV-infections were asymptomatic or caused mild symptoms on leaves and fruit, and texture quality was comparable to control. At the same time, fruits of ZYMV-infected plants showed severe symptoms like deformations and discoloration, as well as a reduction in firmness and crunchiness after pasteurization. In addition, histological alterations were detected in such fruits, possibly causing textural changes. We conclude that plant viruses could have a considerable influence on the firmness and crunchiness of pickled cucumbers after pasteurization. It is possible that the severity of symptom expression has an influence on texture properties.


2020 ◽  
Vol 110 (1) ◽  
pp. 94-105 ◽  
Author(s):  
Cristina Rodríguez-Nevado ◽  
Rosario G. Gavilán ◽  
Israel Pagán

Increasing evidence indicates that in wild ecosystems plant viruses are important ecological agents, and with potential to jump into crops, but only recently have the diversity and population dynamics of wild plant viruses begun to be explored. Theory proposes that biotic factors (e.g., ecosystem biodiversity, host abundance, and host density) and climatic conditions would determine the epidemiology and evolution of wild plant viruses. However, these predictions seldom have been empirically tested. For 3 years, we analyzed the prevalence and genetic diversity of Potyvirus species in preserved riparian forests of Spain. Results indicated that potyviruses were always present in riparian forests, with a novel generalist potyvirus species provisionally named Iberian hop mosaic virus (IbHMV), explaining the largest fraction of infected plants. Focusing on this potyvirus, we analyzed the biotic and climatic factors affecting virus infection risk and population genetic diversity in its native ecosystem. The main predictors of IbHMV infection risk were host relative abundance and species richness. Virus prevalence and host relative abundance were the major factors determining the genetic diversity and selection pressures in the virus population. These observations support theoretical predictions assigning these ecological factors a key role in parasite epidemiology and evolution. Finally, our phylogenetic analysis indicated that the viral population was genetically structured according to host and location of origin, as expected if speciation is largely sympatric. Thus, this work contributes to characterizing viral diversity and provides novel information on the determinants of plant virus epidemiology and evolution in wild ecosystems.


2020 ◽  
Vol 7 (1) ◽  
pp. 403-419 ◽  
Author(s):  
Meng Yang ◽  
Asigul Ismayil ◽  
Yule Liu

Autophagy is a conserved vacuole/lysosome-mediated degradation pathway for clearing and recycling cellular components including cytosol, macromolecules, and dysfunctional organelles. In recent years, autophagy has emerged to play important roles in plant-pathogen interactions. It acts as an antiviral defense mechanism in plants. Moreover, increasing evidence shows that plant viruses can manipulate, hijack, or even exploit the autophagy pathway to promote pathogenesis, demonstrating the pivotal role of autophagy in the evolutionary arms race between hosts and viruses. In this review, we discuss recent findings about the antiviral and proviral roles of autophagy in plant-virus interactions.


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1768
Author(s):  
Michael J. Jeger

Epidemiology is the science of how disease develops in populations, with applications in human, animal and plant diseases. For plant diseases, epidemiology has developed as a quantitative science with the aims of describing, understanding and predicting epidemics, and intervening to mitigate their consequences in plant populations. Although the central focus of epidemiology is at the population level, it is often necessary to recognise the system hierarchies present by scaling down to the individual plant/cellular level and scaling up to the community/landscape level. This is particularly important for diseases caused by plant viruses, which in most cases are transmitted by arthropod vectors. This leads to range of virus-plant, virus-vector and vector-plant interactions giving a distinctive character to plant virus epidemiology (whilst recognising that some fungal, oomycete and bacterial pathogens are also vector-borne). These interactions have epidemiological, ecological and evolutionary consequences with implications for agronomic practices, pest and disease management, host resistance deployment, and the health of wild plant communities. Over the last two decades, there have been attempts to bring together these differing standpoints into a new synthesis, although this is more apparent for evolutionary and ecological approaches, perhaps reflecting the greater emphasis on shorter often annual time scales in epidemiological studies. It is argued here that incorporating an epidemiological perspective, specifically quantitative, into this developing synthesis will lead to new directions in plant virus research and disease management. This synthesis can serve to further consolidate and transform epidemiology as a key element in plant virus research.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Rebeca Cuesta ◽  
Carmen Yuste-Calvo ◽  
David Gil-Cartón ◽  
Flora Sánchez ◽  
Fernando Ponz ◽  
...  

Abstract Turnip mosaic virus (TuMV), a potyvirus, is a flexible filamentous plant virus that displays a helical arrangement of coat protein copies (CPs) bound to the ssRNA genome. TuMV is a bona fide representative of the Potyvirus genus, one of most abundant groups of plant viruses, which displays a very wide host range. We have studied by cryoEM the structure of TuMV virions and its viral-like particles (VLPs) to explore the role of the interactions between proteins and RNA in the assembly of the virions. The results show that the CP-RNA interaction is needed for the correct orientation of the CP N-terminal arm, a region that plays as a molecular staple between CP subunits in the fully assembled virion.


2018 ◽  
Vol 92 (14) ◽  
Author(s):  
Craig G. Webster ◽  
Elodie Pichon ◽  
Manuella van Munster ◽  
Baptiste Monsion ◽  
Maëlle Deshoux ◽  
...  

ABSTRACTPlant viruses transmitted by insects cause tremendous losses in most important crops around the world. The identification of receptors of plant viruses within their insect vectors is a key challenge to understanding the mechanisms of transmission and offers an avenue for future alternative control strategies to limit viral spread. We here report the identification of two cuticular proteins within aphid mouthparts, and we provide experimental support for the role of one of them in the transmission of a noncirculative virus. These two proteins, named Stylin-01 and Stylin-02, belong to the RR-1 cuticular protein subfamily and are highly conserved among aphid species. Using an immunolabeling approach, they were localized in the maxillary stylets of the pea aphidAcyrthosiphon pisumand the green peach aphidMyzus persicae, in the acrostyle, an organ earlier shown to harbor receptors of a noncirculative virus. A peptide motif present at the C termini of both Stylin-01 and Stylin-02 is readily accessible all over the surface of the acrostyle. Competition forin vitrobinding to the acrostyle was observed between an antibody targeting this peptide and the helper component protein P2 ofCauliflower mosaic virus. Furthermore, silencing thestylin-01but notstylin-02gene through RNA interference decreased the efficiency ofCauliflower mosaic virustransmission byMyzus persicae. These results identify the first cuticular proteins ever reported within arthropod mouthparts and distinguish Stylin-01 as the best candidate receptor for the aphid transmission of noncirculative plant viruses.IMPORTANCEMost noncirculative plant viruses transmitted by insect vectors bind to their mouthparts. They are acquired and inoculated within seconds when insects hop from plant to plant. The receptors involved remain totally elusive due to a long-standing technical bottleneck in working with insect cuticle. Here we characterize the role of the two first cuticular proteins ever identified in arthropod mouthparts. A domain of these proteins is directly accessible at the surface of the cuticle of the acrostyle, an organ at the tip of aphid stylets. The acrostyle has been shown to bind a plant virus, and we consistently demonstrated that one of the identified proteins is involved in viral transmission. Our findings provide an approach to identify proteins in insect mouthparts and point at an unprecedented gene candidate for a plant virus receptor.


Biljni lekar ◽  
2021 ◽  
Vol 49 (1) ◽  
pp. 54-64
Author(s):  
Đina Konstantin ◽  
Goran Barać ◽  
Renata Iličić ◽  
Ferenc Bagi

Plant viruses cause considerable economic losses and are a threat for sustainable agriculture. Due to the multiple possibilities of infection, they have become widespread. The use of healthy propagation material, free of viroids, viruses and bacteria, is an important strategy in disease control in viticulture. The early and accurate detection of plant viruses is an essential component of their control. Due to the widespread of Grapevine fanleaf virus (GFLV) and its devastating potential, various diagnostic methods are being used. GFLV detection methods based on the specificity of the protein cover (ELISA) and nucleic acid-based virus detection methods (RT-PCR, qRT-PCR). Symptoms of viral diseases are often not distinct and can be confused with those of abiotic stresses, so visual inspection is not reliable enough.


1997 ◽  
Vol 44 (4) ◽  
pp. 827-837 ◽  
Author(s):  
A L Haenni ◽  
F Chapeville

The first demonstration on the aminoacylation capacity of the RNA genome of a plant virus appeared more than 25 years ago. Shortly thereafter, aminoacylation of the RNA genome of a number of other plant viruses was observed. This led to considerable work on the tRNA-like region of these viral RNAs, and to the first demonstration of the presence of pseudoknots in their folding pattern. In spite of the vast amount of efforts put into trying to understand the reason for the aminoacylation capacity of certain viral RNA genomes, as yet no clear general conclusion emerges. It rather looks as though the reason for aminoacylation may be different for different viruses, and that aminoacylation may operate at different levels in the virus life cycle. Given that certain RNA viruses possess structures which resemble that of tRNAs at their 5'- or 3'-termini, it is most likely that convergent evolution may have dominated the appearance of such structures in the virus world.


2021 ◽  
Vol 21 (no 1) ◽  
Author(s):  
Shoeb Ahmad ◽  
Akil A. Khan

In recent years, the development of the floriculture sector has received rising attention, particularly for the benefit of small-scale agricultural enterprises producing domestic seedlings of perennial ornamental plants and for export to neighbouring countries. Plant diseases, including those associated with phytoplasma infections and plant viruses, are affected by this industry, as are other sectors of the agricultural economy.In a number of commercial cut flowers and ornamental plants, phytoplasma and plant virus infection causes diseases, causing major economic losses globally.Therefore, phytoplasma and plant virus diseases are the key constraints in the production of lucrative ornamental plants and lower their quantum and quality, gaining international importance due to unspecific symptoms, different losses and complex epidemiology around the world. These disease epidemics forced the removal of several varieties of floricultural plants such as gladiolus, lily, chrysanthemum and rose from cultivation. In various ornamental plants in botanical gardens and various floriculture farms, symptoms of general yellowing as well as plant stunting, shoot proliferation, phyllody, virescence, lower cost of flowers and reddening of leaves were observed. The prevalent mode of distribution of plant viruses is vector transmission, vegetative propagation or seed, although in some cases, viruses are transmitted by mechanical contact. Begomoviruses in economically important ornamental plants, especially in the tropical and subtropical regions, are among the most dangerous epidemic-causing pathogens, but phytoplasmas of ornamental plants have been widely distributed geographically. Information on phytoplasma and begomovirus infecting ornamental plants has been addressed in this study


2018 ◽  
Vol 12 (2) ◽  
pp. 390-396 ◽  
Author(s):  
Joseph Cutler ◽  
Juliane Langer ◽  
Susanne Von Bargen ◽  
Orlando Acosta-Losada ◽  
Fánor Casierra-Posada ◽  
...  

Plant viruses may pose a threat to crops in Colombia. To evaluate the potential risk of yield losses due to plant virus infection, a literature analysis followed by a first field study was carried out focusing on purple passion fruit (Passiflora edulis Sims), cape gooseberry (Physalis peruviana L.), and ornamental rose (Rosa sp.), which are important Colombian exports. Over the past three years, plant material was collected from 21 farms in Cundinamarca and Boyacá, Colombia, two regions that are in close proximity to El Dorado International Airport, the country’s largest air freight terminal. Plants were visually inspected and subsequently tested by bioassay and serological methods. Overall, in the samples investigated by the two diagnostic methods, plant viruses were detected. Detected viruses belong to the genus Poty-, Tobamo-, Nepo-, Ilar-, and Tospovirus. The extent of the distribution and occurrence of these viruses in each crop has to be determined in a representative field study. Such a monitoring program could be supported by a standardized farmer interview. The development of suitable plant virus diagnostic and managements tools is the focus of a cooperation project between German and Colombian universities, the Colombian Agricultural Institute (ICA), the Colombian Corporation of Agricultural Investigation (AGROSAVIA) and the International Center for Tropical Agriculture (CIAT).


Sign in / Sign up

Export Citation Format

Share Document