scholarly journals Effect of Animal ByProducts Fertilization on Durum Wheat in Mediterranean Conditions: Preliminary Results

Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1094 ◽  
Author(s):  
Paolo Mulè ◽  
Marco Dettori ◽  
Gianluca Carboni

This study aims to evaluate the effects of new-BioFertilizing Amendments (BFAs) deriving from fast organic matter decomposition of Animal ByProducts (ABPs) in comparison with ordinary soil organic amendments (compost), mineral N-fertilizers and no fertilization, on durum wheat development and production in a field trial under Mediterranean conditions. Results showed taller plants with heavier spikes and greater vigor in plots fertilized with BFAs when compared to no fertilization and N-fertilization, respectively. Likewise, BFAs fertilization resulted in higher protein content, gluten content, protein yields and higher values of yellow index with respect to no fertilization and N-fertilization. In contrast, lower values for test weight in correspondence of BFAs fertilization as well as no statistically significant differences on grain yield and gluten index were found. These preliminary results suggest that replacing N-fertilization with BFAs can be effective to ensure crop quality and yield stability in Mediterranean conditions.

Agriculture ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 903
Author(s):  
Karin Kauer ◽  
Sandra Pärnpuu ◽  
Liina Talgre ◽  
Viacheslav Eremeev ◽  
Anne Luik

This study aimed to investigate the soil organic carbon (SOC) sequestration rate and soil organic matter (SOM) composition in conventional rotational cropping with mineral fertilization compared with organic cover cropping with and without composted manure addition during 2008–2018 to specify the SOM stabilization under different farming systems. The SOC proportion in particulate organic matter (POM) (63–2000 µm) and mineral-associated organic matter (MAOM) (<63 µm) fractions were estimated in different treatments, and the SOM composition in the fractions was characterized by FTIR spectroscopy. The SOC sequestration rate was treatment-dependent, with the higher SOC sequestration rate (1.26 Mg ha−1 y−1) in the organic treatment with cover crop and composted manure. Across all treatments, 57.3%–77.8% of the SOC stock was in the MAOM fraction. Mineral N fertilization increased POM-C concentration by 19%–52% compared with the unfertilized control. Under the organic treatments, the POM-C concentration was 83%–95% higher than the control. The MAOM-C concentration increased by 8%–20%. The mineral N fertilization and organic treatments (with and without cover crops and composted manure) increased the SOC stock proportion of POM. The highest proportion of SOC stock related to POM was in the cover cropping system, reducing the proportion of C related to the MAOM fraction, but the addition of composted manure with cover cropping also increased the proportion of C in MAOM. Compared with MAOM, the POM had a less resistant organic matter composition, and the POM resistance was higher in organic than conventional treatments. In general, the recalcitrance of SOM increased with SOC concentration. The POM fraction had higher aromaticity (or degree of decomposition) than the MAOM fraction. The aromaticity in POM and MAOM fractions was higher in the organic farming system and depended on mineral N fertilization and cover cropping, but the effect of manure was not significant. Although the SOC sequestration rate was higher under manure addition, resulting in the highest formation of both POM and MAOM in the soil, manure addition had little effect on overall SOM composition compared with cover crops.


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2025
Author(s):  
Qin Chen ◽  
Zheng-Kui Ge ◽  
Rong Chai ◽  
Yuan Li ◽  
Yu-Long Li ◽  
...  

Soil-dissolved organic matter (DOM) drives the carbon (C) and nitrogen (N) cycles in agroecosystems. Despite many studies on DOM dynamics, hardly any attention has been directed toward DOM quality, particularly DOM composition. The aim of this study was to elucidate how C and N management practices alter soil water-extractable organic matter (WEOM) in a loess soil agroecosystem. Field experiments were conducted with a winter wheat monoculture. Three N fertilization rates (0, 120, and 240 kg ha−1 year−1) were applied for 17 years (2002–2019), combined with five C practices (zero, low, and high rates of sheep manure or wheat straw) for three years (2016–2019). The results reveal that soil organic carbon (SOC) and water-extractable organic carbon (WEOC) concentrations in the topsoil (0–20 cm) were increased by organic amendments considerably but were not affected by N fertilization. The fluorescence excitation–emission matrix spectra (EEM) of WEOM were resolved to two humic-like components (C1 and C2) and two soluble microbial byproduct-like components (C3 and C4). The proportions of C1 and C2 were increased, while the proportion of C3 was decreased by both C and N management practices. In conclusion, organic amendments increased both WEOM quality and its proportion of humic-like components, whereas N fertilization increased the proportion of humic-like components without variations of WEOM quality in the topsoil of loess soil.


2016 ◽  
Vol 219 ◽  
pp. 83-92 ◽  
Author(s):  
Clara Ella Demurtas ◽  
Giovanna Seddaiu ◽  
Luigi Ledda ◽  
Chiara Cappai ◽  
Luca Doro ◽  
...  

Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1508
Author(s):  
Federica Carucci ◽  
Giuseppe Gatta ◽  
Anna Gagliardi ◽  
Pasquale De Vita ◽  
Marcella Michela Giuliani

In wheat, the increase in nitrogen use efficiency (NUE) and optimization of the nitrogen doses to be used are both very important aspects for improving sustainable and productive agriculture. The aim of this study was to investigate, under rainfed Mediterranean conditions, the influence of strobilurin treatment and N fertilization on durum wheat N use efficiency for yield (NUEy) and protein (NUEp) and on the contribution of their components, nitrogen uptake efficiency (UPE) and nitrogen utilization efficiency (NUtE). Two durum wheat cultivars (Saragolla and Sfinge) were grown for two years in field conditions under five nitrogen treatments (60 kg ha−1 N60; 90 and 120 kg ha−1 given two and three times; N90, N90T3, N120 and N120T3) comparing a control without strobilurin treatment (ST0) and one application of strobilurin (STaz). In Sfinge, STaz caused a decrease in UPE and NUEp and an increase in NUtE and NUEy. In Saragolla, the opposite behavior was observed. Moreover, strobilurin positively affected the contribution of UPE and negatively that of NUtE to NUEy only in Saragolla. Furthermore, strobilurin determined higher NUEy and NUEp values under most of the N treatments adopted in the drier year. With this study, we supported the hypothesis that in Mediterranean conditions, the possibility of reducing N rate application from 120 to 90 kg ha−1 with a strobilurin-based treatment, even in the absence of fungal diseases, could represent a useful agronomic strategy for durum wheat grown under drought conditions as those predicted under the ongoing climate change.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1217
Author(s):  
Jiří Balík ◽  
Martin Kulhánek ◽  
Jindřich Černý ◽  
Ondřej Sedlář ◽  
Pavel Suran

Soil organic matter carbon (CSOM) compounds degradation was observed in long-term field experiments with silage maize monoculture. Over a period of 26 years, the content of carbon in topsoil decreased by 22% in control unfertilized plots compared to 25% and 26% in treatments fertilized annually with mineral nitrogen. With annual wheat straw application (together with mineral N), the content of CSOM decreased by 8%. Contrary to that, the annual application of farmyard manure resulted in a CSOM increase of 16%. The ratio of carbon produced by maize related to total topsoil CSOM content ranged between 8.1–11.8%. In plots with mineral N fertilization, this ratio was always higher than in the unfertilized control plots. With the weaker soil extraction agent (CaCl2), the ratio of carbon produced by maize was determined to be 17.9–20.7%. With stronger extraction agent (pyrophosphate) it was only 10.2–14.6%. This shows that maize produced mostly unstable carbon compounds. Mineral N application resulted in stronger mineralization of original and stable organic matter compared to the unfertilized control. However, the increase of maize-produced carbon content in fertilized plots did not compensate for the decrease of “old” organic matter. As a result, a tendency to decrease total CSOM content in plots with mineral N applied was observed.


Horticulturae ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 205
Author(s):  
Ihab M. Farid ◽  
Mohamed A. El-Ghozoli ◽  
Mohamed H. H. Abbas ◽  
Dalia S. El-Atrony ◽  
Hassan H. Abbas ◽  
...  

Organic amendments are important sources of nutrients that release upon organic matter degradation, yet the stability of these organics in arid and semi-arid regions is relatively low. In contrast, humic substances (HS) are resistant to biodegradation and can keep nutrients in the soil available for the plant over a long time. Combinations between humic substances (HS) and mineral-N fertilizers are assumed to retain higher available nutrients in soils than those recorded for the sole application of either mineral or organic applications. We anticipate, however, that humic substances might not be as efficient as the organics from which they were extracted in increasing NP uptake by plants. To test these assumptions, faba bean was planted in a pot experiment under greenhouse conditions following a complete randomized design while considering three factors: two soils (calcareous and non-calcareous, Factor A), two organics (biogas and compost, Factor B) and combinations of the organics and their extracts (HA or FA) together with complementary doses of mineral-N ((NH4)2SO4) to attain a total rate of 50 kg N ha−1 (the recommended dose for faba bean plants) (Factor C). Results indicated that nitrogenase activity increased significantly due to the application of the used organics. In this respect, compost manure caused higher nitrogenase activity than biogas manure did. Humic substances raised NP-availability and the uptake by plants significantly; however, the values of increase were lower than those that occurred due to the compost or biogas manure. Moreover, the sole application of the used organics recorded the highest increases in plant biomass. Significant correlations were also detected between NP-availability, uptake and plant biomass. This means that HS could probably retain nutrients in available forms for long time periods, yet nutrients released continuously but slowly upon decomposition of organics seemed more important for plant nutrition.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1300
Author(s):  
Janusz Prusiński ◽  
Anna Baturo-Cieśniewska ◽  
Magdalena Borowska

A growing interest in soybean cultivation in Poland has been observed in the recent years, however it faces a lot of difficulties resulting from a poorly understood effectiveness of plant nitrogen fertilization and from the introduction of Bradyrhizobium japonicum to the environment. The aim of the study was to evaluate the consistency of response of two soybean cultivars to three different rates of mineral N fertilization and two seed inoculation treatments with B. japonicum in field conditions over four years regardless of previous B. japonicum presence in the soil. A highly-diversified-over-years rainfall and temperature in the growing season do not allow for a definite statement of the differences resulting from seed inoculation and mineral N fertilization applied separately or jointly in soybean. A high sensitivity of the nodulation process to rainfall deficits was noted, which resulted in a decreased amount of B. japonicum DNA measured in qPCR and dry matter of nodules. ‘Annushka’ demonstrated a higher yield of seeds and protein, higher plants and the 1st pod setting. ‘Aldana’, due to a significant decrease in plant density, produced a higher number of pods, seeds per pod and the 1000 seed weight per plant. Both cultivars responded with an increase in the seed yield after seed inoculation with HiStick, also with an application of 30 and 60 kg N, as well as with Nitragina with 60 kg N.


Revista CERES ◽  
2012 ◽  
Vol 59 (5) ◽  
pp. 689-694 ◽  
Author(s):  
Thiago de Oliveira Vargas ◽  
Ellen Rúbia Diniz ◽  
Ricardo Henrique Silva Santos ◽  
Alysson Roberto de Almeida ◽  
Segundo Urquiaga ◽  
...  

Roots effect is not generally considered in studies assessing the performance of crops in response to green manuring. However, such effect can contribute to a better understanding of crop rotation. The aim of this study was to assess the effect of root and shoot of two legumes on the production of cabbage. The experiment was conducted in pots of 10 liters containing substrate of 2:1 soil/sand. The experiment was arranged in a factorial scheme (2x3 + 2) in a randomized block design with five replicates using two legume species (Crotalaria juncea L. and Canavalia ensiformis L), three plant parts (root, shoot, or whole plant), and two additional treatments (mineral fertilization with 100% and 50% of the recommended dose of N for growing cabbage). Pots with legume treatments received mineral fertilizer with 50% of the recommended dose of N for growing cabbage. The experimental plot consisted of a pot containing one plant of cabbage. Legumes were grown in pots and harvested at 78 days. The root biomass was determined in extra pots. Production was assessed using head fresh and dry weight. The application of the whole plant of both legume species reduced cabbage production. However, root or shoot of both legume species was equivalent to 50% of mineral N fertilization required for the cultivation of cabbage.


2015 ◽  
Vol 43 (4) ◽  
pp. 704-716 ◽  
Author(s):  
S. A. Colecchia ◽  
P. De Vita ◽  
M. Rinaldi

Sign in / Sign up

Export Citation Format

Share Document