scholarly journals Repeatable Crack Self-Healing by Photochemical [2 + 2] Cycloaddition of TCE-co-DCE Monomers Enclosed in Homopolymer Microcapsules

Polymers ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 104 ◽  
Author(s):  
Sunyoung Kim ◽  
Bo-Hyun Kim ◽  
Myongkeon Oh ◽  
Dong Hyuk Park ◽  
Sunjong Lee

Self-healing, an autonomous repairing process stimulated by damage, has recently attracted a great deal of attention in the field of medical and mechanical engineering as well as from scientists, due to its valuable potential applications. However, as the self-healing process is mediated by specific functional materials, practical applications have been limited. Here, we introduce a healable homopolymer microcapsule that can self-heal a crack or cleaved part through a photochemical [2 + 2] cycloaddition process. Microcapsules were prepared through photopolymerization and suspension polymerization, each containing 1,1,1-tris (cinnamoyloxymethyl) ethane (TCE) and 1,1-di (cinnamoyloxymethyl) ethane (DCE) monomers, which act as healing materials. TCE and DCE monomers were polymerized into poly (TCE-co-DCE) without a photoinitiator under illumination. The epoxy specimen embedded with microcapsules showed obvious healing performance during illumination after cracking. From the FT-IR spectra for each step of the healing process, the specimen could be repeatedly self-healed through the reversible process of cyclobutane cross-links to the original cinnamate and vice versa. This work shows an alternative approach using homopolymer microcapsules to accomplish the repeatable self-healing of a crack without interface discontinuity, which could be adopted as a healing substance in various paints.

Soft Matter ◽  
2021 ◽  
Author(s):  
Juan Liu ◽  
Hai-Long Yang ◽  
Xiao-Wen Sun ◽  
You-Ming Zhang ◽  
Hong Yao ◽  
...  

Multi-functional materials have received wide attention due to their potential applications in various fields, therefore, developing simple and easy to prepare multi-functional material is an interesting issue. In this work,...


Chemistry ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 935-958
Author(s):  
Pooja Sharma ◽  
Anji Chen ◽  
Dan Wang ◽  
Guijun Wang

Carbohydrate-based low-molecular-weight gelators (LMWGs) are useful classes of compounds due to their numerous applications. Among sugar-based LMWGs, certain peracetylated sugar beta-triazole derivatives were found to be effective organogelators and showed interesting self-assembling properties. To further understand the structural influence towards molecular assemblies and obtain new functional materials with interesting properties, we designed and synthesized a library of tetraacetyl beta-1-triazolyl alkyl-D-glucosides and D-galactosides, in which a two or three carbon spacer is inserted between the anomeric position and the triazole moiety. A series of 16 glucose derivatives and 14 galactose derivatives were synthesized and analyzed. The self-assembling properties of these new triazole containing glycoconjugates in different solvents were analyzed. Several glucose derivatives were found to be effective LMWGs, with compound 7a forming gels in a variety of organic solvents as well as in the presence of metal ions in aqueous solutions. The organogels formed by several compounds were characterized using optical microscopy, atomic force microscopy (AFM) and UV-vis spectroscopy, etc. The co-gels formed by compound 7a with the Fmoc derivative 7i showed interesting fluorescence enhancement upon gelation. Several gelators were also characterized using powder X-ray diffraction and FT-IR spectroscopy. The potential applications of these sugar-based gelators for drug delivery and dye removal were also studied.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2246
Author(s):  
Zhi Li ◽  
Yiming Guo ◽  
Yufen Zong ◽  
Kai Li ◽  
Shuang Wang ◽  
...  

Liquid metal (LM) materials, including pure gallium (Ga) LM, eutectic alloys and their composites with organic polymers and inorganic nanoparticles, are cutting-edge functional materials owing to their outstanding electrical conductivity, thermal conductivity, extraordinary mechanical compliance, deformability and excellent biocompatibility. The unique properties of LM-based materials at room temperatures can overcome the drawbacks of the conventional electronic devices, particularly high thermal, electrical conductivities and their fluidic property, which would open tremendous opportunities for the fundamental research and practical applications of stretchable and wearable electronic devices. Therefore, research interest has been increasingly devoted to the fabrication methodologies of LM nanoparticles and their functional composites. In this review, we intend to present an overview of the state-of-art protocols for the synthesis of Ga-based materials, to introduce their potential applications in the fields ranging from wearable electronics, energy storage batteries and energy harvesting devices to bio-applications, and to discuss challenges and opportunities in future studies.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jiahui He ◽  
Zixi Zhang ◽  
Yutong Yang ◽  
Fenggang Ren ◽  
Jipeng Li ◽  
...  

AbstractEndoscopic mucosal resection (EMR) and endoscopic submucosal dissection (ESD) are well-established therapeutics for gastrointestinal neoplasias, but complications after EMR/ESD, including bleeding and perforation, result in additional treatment morbidity and even threaten the lives of patients. Thus, designing biomaterials to treat gastric bleeding and wound healing after endoscopic treatment is highly desired and remains a challenge. Herein, a series of injectable pH-responsive self-healing adhesive hydrogels based on acryloyl-6-aminocaproic acid (AA) and AA-g-N-hydroxysuccinimide (AA-NHS) were developed, and their great potential as endoscopic sprayable bioadhesive materials to efficiently stop hemorrhage and promote the wound healing process was further demonstrated in a swine gastric hemorrhage/wound model. The hydrogels showed a suitable gelation time, an autonomous and efficient self-healing capacity, hemostatic properties, and good biocompatibility. With the introduction of AA-NHS as a micro-cross-linker, the hydrogels exhibited enhanced adhesive strength. A swine gastric hemorrhage in vivo model demonstrated that the hydrogels showed good hemostatic performance by stopping acute arterial bleeding and preventing delayed bleeding. A gastric wound model indicated that the hydrogels showed excellent treatment effects with significantly enhanced wound healing with type I collagen deposition, α-SMA expression, and blood vessel formation. These injectable self-healing adhesive hydrogels exhibited great potential to treat gastric wounds after endoscopic treatment.


Nanophotonics ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Qingqing Cheng ◽  
Juncheng Wang ◽  
Ling Ma ◽  
Zhixiong Shen ◽  
Jing Zhang ◽  
...  

AbstractAiry beams exhibit intriguing properties such as nonspreading, self-bending, and self-healing and have attracted considerable recent interest because of their many potential applications in photonics, such as to beam focusing, light-sheet microscopy, and biomedical imaging. However, previous approaches to generate Airy beams using photonic structures have suffered from severe chromatic problems arising from strong frequency dispersion of the scatterers. Here, we design and fabricate a metasurface composed of silicon posts for the frequency range 0.4–0.8 THz in transmission mode, and we experimentally demonstrate achromatic Airy beams exhibiting autofocusing properties. We further show numerically that a generated achromatic Airy-beam-based metalens exhibits self-healing properties that are immune to scattering by particles and that it also possesses a larger depth of focus than a traditional metalens. Our results pave the way to the realization of flat photonic devices for applications to noninvasive biomedical imaging and light-sheet microscopy, and we provide a numerical demonstration of a device protocol.


2021 ◽  
Vol 9 (7) ◽  
pp. 3931-3939
Author(s):  
Shiqiang Song ◽  
Honghao Hou ◽  
Jincheng Wang ◽  
Pinhua Rao ◽  
Yong Zhang

A high-stretchability, high-strength, tear-resistant, self-healing and adhesive elastomer is prepared through a facile and effective physical blending strategy. The elastomer shows potential applications in e-skin devices.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hamed Nosrati ◽  
Reza Aramideh Khouy ◽  
Ali Nosrati ◽  
Mohammad Khodaei ◽  
Mehdi Banitalebi-Dehkordi ◽  
...  

AbstractSkin is the body’s first barrier against external pathogens that maintains the homeostasis of the body. Any serious damage to the skin could have an impact on human health and quality of life. Tissue engineering aims to improve the quality of damaged tissue regeneration. One of the most effective treatments for skin tissue regeneration is to improve angiogenesis during the healing period. Over the last decade, there has been an impressive growth of new potential applications for nanobiomaterials in tissue engineering. Various approaches have been developed to improve the rate and quality of the healing process using angiogenic nanomaterials. In this review, we focused on molecular mechanisms and key factors in angiogenesis, the role of nanobiomaterials in angiogenesis, and scaffold-based tissue engineering approaches for accelerated wound healing based on improved angiogenesis.


Soft Matter ◽  
2021 ◽  
Author(s):  
Yuxing Shan ◽  
shuai liang ◽  
Xiangkai Mao ◽  
Jie Lu ◽  
Lili Liu ◽  
...  

Abstract. Stretchable elastomers with superhydrophobic surfaces have potential applications in wearable electronics. However, various types of damage inevitably occur on these elastomers in actual application, resulting in deterioration of the...


Sign in / Sign up

Export Citation Format

Share Document