scholarly journals Improved Flame-Retardant and Ceramifiable Properties of EVA Composites by Combination of Ammonium Polyphosphate and Aluminum Hydroxide

Polymers ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 125 ◽  
Author(s):  
Feipeng Lou ◽  
Kai Wu ◽  
Quan Wang ◽  
Zhongyu Qian ◽  
Shijuan Li ◽  
...  

Ceramifiable flame-retardant ethylene-vinyl acetate (EVA) copolymer composites for wire and cable sheathing materials were prepared through melt compounding with ammonium polyphosphate (APP), aluminum hydroxide (ATH) and fluorophlogopite mica as the addition agents. The effects of ammonium polyphosphate, alumina trihydrate, and APP/ATH hybrid on the flame retardant, as well as on the thermal and ceramifiable properties of EVA composites, were investigated. The results demonstrated that the composites with the ratio of APP:ATH = 1:1 displayed the best flame retardancy and the greatest char residues among the various EVA composites. The tensile strength of the composites was 6.8 MPa, and the residue strength sintered at 1000 °C reached 5.2 MPa. The effect of sintering temperature on the ceramifiable properties, microstructures, and crystalline phases of the sintered specimen was subsequently investigated through X-ray diffraction, Fourier transform infrared, and scanning electron microscopy. The XRD and FTIR results demonstrated that the crystal structure of mica was disintegrated, while magnesium orthophosphate (Mg3(PO4)2) was simultaneously produced at an elevated temperature, indicating that the ceramization of EVA composites had occurred. The SEM results demonstrated that a more continuous and compact microstructure was produced with the rise in the sintering temperature. This contributed to the flexural strength improvement of the ceramics.

2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Long Li ◽  
Yi Qian ◽  
Peng Qiao ◽  
Haoyue Han ◽  
Haiming Zhang

Bittern, as a byproduct of salt manufacture, is abundant in China. The researches and developments for seawater bittern have mainly focused on the reuse of magnesium, calcium, lithium, and boron. However, the utilization rate is less than 20%. The large amount of unused bittern has become a challenge that attracts much attention in academic and industry areas. In this paper, three kinds of layered double hydroxides (LDHs) were synthesized from bittern using a coprecipitation method and characterized by X-ray diffraction (XRD). The XRD results showed that the three kinds of LDHs(MgAl-LDHs, MgFe-LDHs and MgAlFe-LDHs) were successfully synthesized. Then, the flame retardant properties and thermal properties of the three LDHs in ethylene vinyl acetate (EVA)/LDHs composites had been tested by cone calorimeter test (CCT), limiting oxygen index (LOI), smoke density test (SDT), and thermogravimetry-Fourier transform infrared spectrometry (TG-IR). The CCT results showed that the heat release rate (HRR) of all three kinds of EVA/LDHs composites significantly decreased compared with that of pure EVA, and the EVA/MgAl-LDHs composites had the lowest PHRR value of 222.65 kW/m2. The LOI results showed that EVA/MgAl-LDHs composites had the highest LOI value of 29.8%. The SDT results indicated that MgAl-LDHs were beneficial to smoke suppression. TG-IR results showed that EVA/MgAl-LDHs composites had a better thermal stability.


2014 ◽  
Vol 1035 ◽  
pp. 67-73
Author(s):  
Chui Xuan Jia ◽  
Yi Qian ◽  
Xi Lei Chen

Mg-Al-Fe ternary layered double hydroxides (LDHs) were synthesized based on Red mud by a calcination-rehydration method, and characterized using X-ray diffraction (XRD). The flame-retardant properties of EVA/LDHs (EVA, ethylene-vinyl acetate) composites were studied via cone calorimeter test (CCT), smoke density test (SDT), and Thermogravimetric analysis (TGA). The CCTs data indicate that heat release rates (HRR) of EVA/LDHs composites decrease in comparison with that of EVA, EVA/Red mud, EVA/ATH and EVA/MH composites. The SDT results show that LDHs is helpful to smoke suppression. The TGA show that LDHs-containing EVA2 has higher thermal stability at high temperatures than the other samples.


1986 ◽  
Vol 78 ◽  
Author(s):  
R. A. Cutler ◽  
J. J. Hansen ◽  
A. V. Virkar ◽  
D. K. Shetty ◽  
R. C. Winterton

ABSTRACTA1 2 03–15 vol. % ZrO2 bar shaped composite specimens were fabricated by pressing three layers. The two outer layers consisted of Al2O3 and unstabilized ZrO2 (primarily in the monoclinic polymorph), and the inner layer consisted of Al2O3 and partially stabilized zirconia in the tetragonal polymorph. The transformation of ZrO2 from tetragonal to monoclinic, upon cooling from sintering temperature, led to the establishment of residual compressive stresses in the outer layers. Flexural tests at room temperature showed that residual stresses contributed to strength increasing from 450 to 825 MPa. The existence of these stresses was verified by measuring apparent fracture toughness, as well as using strain gages. Strength and toughness data were obtained at 500, 750, and 1000°C. X-ray diffraction was used to explain the elevated temperature data by monitoring the monoclinic to tetragonal transformation upon heating to 1000°C.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3790
Author(s):  
Yongzheng Ji ◽  
Tsuyoshi Honma ◽  
Takayuki Komatsu

Sodium super ionic conductor (NASICON)-type Na3Zr2Si2PO12 (NZSP) with the advantages of the high ionic conductivity, stability and safety is one of the most famous solid-state electrolytes. NZSP, however, requires the high sintering temperature about 1200 °C and long sintering time in the conventional solid-state reaction (SSR) method. In this study, the liquid-phase sintering (LPS) method was applied to synthesize NZSP with the use of NaPO3 glass with a low glass transition temperature of 292 °C. The formation of NZSP was confirmed by X-ray diffraction analyses in the samples obtained by the LPS method for the mixture of Na2ZrSi2O7, ZrO2, and NaPO3 glass. The sample sintered at 1000 °C for 10 h exhibited a higher Na+ ion conductivity of 1.81 mS/cm at 100 °C and a lower activation energy of 0.18 eV compared with the samples prepared by the SSR method. It is proposed that a new LPE method is effective for the synthesis of NZSP and the NaPO3 glass has a great contribution to the Na+ diffusion at the grain boundaries.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 313
Author(s):  
Mohamad M. Ahmad ◽  
Hicham Mahfoz Kotb ◽  
Celin Joseph ◽  
Shalendra Kumar ◽  
Adil Alshoaibi

La2/3Cu3Ti4O12 (LCTO) powder has been synthesized by the mechanochemical milling technique. The pelletized powder was conventionally sintered for 10 h at a temperature range of 975–1025 °C, which is a lower temperature process compared to the standard solid-state reaction. X-ray diffraction analysis revealed a cubic phase for the current LCTO ceramics. The grain size of the sintered ceramics was found to increase from 1.5 ± 0.5 to 2.3 ± 0.5 μm with an increase in sintering temperature from 975 to 1025 °C. The impedance results show that the grain conductivity is more than three orders of magnitude larger than the grain boundary conductivity for LCTO ceramics. All the samples showed a giant dielectric constant (1.7 × 103–3.4 × 103) and dielectric loss (0.09–0.17) at 300 K and 10 kHz. The giant dielectric constant of the current samples was attributed to the effect of internal barrier layer capacitances due to their electrically inhomogeneous structure.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 218
Author(s):  
Xianjie Yuan ◽  
Xuanhui Qu ◽  
Haiqing Yin ◽  
Zaiqiang Feng ◽  
Mingqi Tang ◽  
...  

This present work investigates the effects of sintering temperature on densification, mechanical properties and microstructure of Al-based alloy pressed by high-velocity compaction. The green samples were heated under the flow of high pure (99.99 wt%) N2. The heating rate was 4 °C/min before 315 °C. For reducing the residual stress, the samples were isothermally held for one h. Then, the specimens were respectively heated at the rate of 10 °C/min to the temperature between 540 °C and 700 °C, held for one h, and then furnace-cooled to the room temperature. Results indicate that when the sintered temperature was 640 °C, both the sintered density and mechanical properties was optimum. Differential Scanning Calorimetry, X-ray diffraction of sintered samples, Scanning Electron Microscopy, Energy Dispersive Spectroscopy, and Transmission Electron Microscope were used to analyse the microstructure and phases.


2012 ◽  
Vol 476-478 ◽  
pp. 1031-1035
Author(s):  
Wei Min Liu ◽  
Xing Ai ◽  
Jun Zhao ◽  
Yong Hui Zhou

Al2O3-TiC-ZrO2ceramic composites (ATZ) were fabricated by hot-pressed sintering. The phases and microstructure of the composites were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The relative density and mechanical properties (flexural strength, fracture toughness and Vicker’s hardness) of the composites were tested. The results show that the microstructure of the composites was the gray core-white rim. With the increase of sintering temperature, the relative density and mechanical properties of the composites increased first and then decreased. The composite sintered at 1705°C has the highest synthetical properties, and its relative density, flexural strength, fracture toughness and Vickers hardness are 98.3%,970MPa,6.0 MPa•m1/2and 20.5GPa, respectively.


2014 ◽  
Vol 1061-1062 ◽  
pp. 83-86
Author(s):  
Hong Wu ◽  
De Yi Zheng

In this paper, the effects of different sintering temperature on the microstructure and piezoelectric properties of Pb(Nb2/3Zn1/3)0.03(Zr52Ti48)0.97O3(PNZZT) ceramic samples were investigated. The Pb(Nb2/3Zn1/3)0.03(Zr52Ti48)0.97O3 ceramics materials was prepared by a conventional mixed oxide method. In the period of the experiment, the relationship between crystallographic phase and microstructure were analyzed by X-ray diffraction(XRD) and scanning electron microscopy(SEM) respectively. The XRD patterns shows that all of the ceramic samples are with a tetragonal perovskite structure. Along with sintering temperature increased and the x is 0.03, the grain size gradually become big. Through this experiment, it has been found that when the x is 0.03 and sintered at 1130°C for 2 h, the grains grow well, the grain-boundary intersection of the sample combined well and the porosity of the ceramics decreased, an excellent comprehensive electrical properties of the Pb(Nb2/3Zn1/3)0.03(Zr52Ti48)0.97O3 samples can be obtained. Its best electrical properties are as follows: dielectric constant (ε) is 1105, dielectric loss(tg) is 0.017, electromechanical coupling coefficient (Kp) is 0.287, piezoelectric constant(d33) is 150PC/N


Author(s):  
Haiquan Wang ◽  
Shixuan Li ◽  
Kangguo Wang ◽  
Xiuli Chen ◽  
Huanfu Zhou

AbstractThis study investigates the bulk density, sintering behaviour, and microwave dielectric properties of the MgO-2B2O3 series ceramics synthesised by solid-state reaction. According to the X-ray diffraction and microstructural analyses, the as-prepared MgO-2B2O3 ceramics possess a single-phase structure with a rod-like morphology. The effects of different quantities of H3BO3 and BaCu(B2O5) (BCB) on the bulk density, sintering behaviour, and microwave dielectric properties of the MgO-2B2O3 ceramics were investigated. Accordingly, the optimal sintering temperature was obtained by adding 30 wt% H3BO3 and 8 wt% BCB. We also reduced the sintering temperature to 825 °C. Furthermore, the addition of 40 wt% H3BO3 and 4 wt% BCB increased the quality factor, permittivity, and temperature coefficient of resonance frequency of MgO-2B2O3 to 44,306 GHz (at 15 GHz), 5.1, and −32 ppm/°C, respectively. These properties make MgO-2B2O3 a viable low-temperature co-fired ceramic with broad applications in microwave dielectrics.


Sign in / Sign up

Export Citation Format

Share Document