scholarly journals Synthesis and Acoustic Study of a New Tung Oil-Based Polyurethane Composite Foam with the Addition of Miscanthus Lutarioriparius

Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1144 ◽  
Author(s):  
Yangjie Ji ◽  
Shuming Chen ◽  
Yabing Cheng

Polyurethane foam is commonly used in the automobile industry due to its favorable acoustic performances. In this study, a new tung oil-based polyurethane composite foam (TOPUF) was prepared by a one-step method. Different forms and contents of miscanthus lutarioriparius (ML) were used in TOPUF for improving acoustic performance. Polyurethane foams were characterized by means of Fourier transform infrared and SEM. The acoustic properties and mechanical properties of TOPUF, obtained with ML, were determined and compared with pure petroleum-based polyurethane foam. The results illustrate that the modification of TOPUF with the ML has a positive effect on the acoustic and mechanical properties in comparison to the unmodified foam. TOPUF obtained with ML powders has better acoustic performance than that obtained with ML strips. The optimum acoustic performance is achieved at the filler content of 0.3 wt%. The average sound absorption coefficient and transmission loss can reach 0.518, and 19.05 dB, respectively.

2019 ◽  
Author(s):  
Chem Int

Recycling is a crucial area of research in green polymer chemistry. Various developments in recycling are driven by Environmental concerns, interest in sustainability and desire to decrease the dependence on non-renewable petroleum based materials. Polyurethane foams [PUF] are widely used due to their light weight and superior heat insulation as well as good mechanical properties. As per survey carried Polyurethane Foam Association, 12 metric tonnes of polyurethane foam are discharged during manufacturing and/or processing and hence recycling of PUF is necessary for better economics and ecological reasons. In present study, rejects of PUF is subjected to reaction with a diethylene amine in presence of sodium hydroxide [NaOH] as catalyst, as a result depolymerised product containing hydroxyl and amine groups is obtained. Conventional and Microwave reaction for depolymerizing polyurethane foam have been carried, and best results are obtained by Microwave reaction. Further depolymerised product with hydroxyl and amine functionalities are reacted with bis (2-hydroxyethyl terephthalate) [BHET] obtained by recycling polyethylene terephthalate [PET] and sebacic acid, with stannous oxalate [FASCAT 2100 series] as catalyst to obtain Polyester amides. These Polyester amides having hydroxyl and amino groups in excess are cured with isocyanates-hexamethylene diisocyanate biuret [HDI biuret] and isophorone diisocyanate [IPDI] for coating applications. The coated films are characterized using physical, mechanical and chemical tests, which shows comparable physical, mechanical properties but alkali resistance is poor.


2008 ◽  
Vol 385-387 ◽  
pp. 205-208 ◽  
Author(s):  
Liviu Marsavina ◽  
Tomasz Sadowski ◽  
Dan Mihai Constantinescu ◽  
Radu Negru

Polyurethane foam materials are widely used as cores in sandwich composites, for packing and cushioning. This paper presents the experimental results obtained for the mechanical properties of polyurethane foams in different loading conditions and the influence of impregnation on the mechanical properties. A 200 kg/m3 density polyurethane foam was tested in tension, compression and three point bending. The experimental results show that the impregnation layer has no effect on the strength of the foam, but has considerable influence on the tensile and flexure modulus.


2021 ◽  
pp. 109963622110288
Author(s):  
Yu-Zhou Wang ◽  
Li Ma

Recently, sandwich structures have been widely used in different fields because of their good mechanical properties, but these structures are weak in acoustic performance. In this paper, by combining pyramidal truss core sandwich structure with frame, a new structure is proposed with both good mechanical properties and excellent acoustic performance at low frequency. An analytical model of the pyramidal truss core sandwich structure with frame is developed to investigate the sound transmission loss (STL) performance. Finite element method (FEM) is also used to investigate the STL performance at low frequency. The effects of the incident wave angle and the geometrical parameters on the STL of the structure are discussed.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Shuming Chen ◽  
Yang Jiang ◽  
Jing Chen ◽  
Dengfeng Wang

Flexible polyurethane (PU) foams comprising various additive components were synthesized to improve their acoustic performances. The purpose of this study was to investigate the effects of various additive components of the PU foams on the resultant sound absorption, which was characterized by the impedance tube technique to obtain the incident sound absorption coefficient and transmission loss. The maximum enhancement in the acoustic properties of the foams was obtained by adding fluorine-dichloroethane (141b) and triethanolamine. The results showed that the acoustic absorption properties of the PU foams were improved by adding 141b and triethanolamine and depended on the amount of the water, 141b, and triethanolamine.


Author(s):  
Mohamed Said Abbas ◽  
Antonin Fabbri ◽  
Mohammed Yacine Ferroukhi ◽  
Philippe Glé ◽  
Emmanuel Gourdon ◽  
...  

Bio-based materials are an environmentally friendly alternative to classic construction materials, yet their generally low density can lead to poor acoustic properties. The acoustic performance of hemp shiv and sunflower pith composites is therefore analyzed using Kundt’s tube. Although the loose aggregates present an exceptional sound absorbing behavior, it can be notably worsened in the presence of certain binders. The Transmission Loss is nevertheless enhanced by the binders, although it does not exceed 20 dB in most cases. For both properties, the type of binder has been found to be the most influential parameter. Through the Kundt’s tube method, it is also possible to determine the geometrical parameters of the composites’ microstructure, which have been observed to be similar for materials presenting comparable hygrothermal properties and containing the same binder. In a previous work, an experimental correlation was found between the thermal conductivity and the interparticle porosity of the aforementioned composites, which is compared to theoretical thermal conductivity models from literature without finding any apparent correspondence.


2008 ◽  
Vol 399 ◽  
pp. 123-130 ◽  
Author(s):  
Liviu Marsavina ◽  
Tomasz Sadowski ◽  
Dan Mihai Constantinescu ◽  
Radu Negru

. Polyurethane foam materials are widely used as cores in sandwich composites, for packing and cushioning. The main characteristics of foams are light weight, high porosity, high crushability and good energy absorption capacity. The paper presents the experimental results obtained for the mechanical properties of polyurethane foams in different loading conditions and the influence of impregnation on the mechanical properties. A 200 kg/m3 density polyurethane foam was investigated in the experimental program in three different Strength of Materials laboratories from Lublin, Bucharest and Timisoara. The paper assesses the possibility to describe the polyurethane foam behaviour trough compression tests, micromechanical models and Finite Element Analysis (FEA). The micromechanical models and Finite Element Analysis could be used successfully for representing the engineering stress – strain behaviour if the compression tests provide reliable material parameters.


Polymers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1289 ◽  
Author(s):  
Zhong ◽  
Ding ◽  
Li ◽  
Shen ◽  
Yadav ◽  
...  

Flexible pressure sensors have attracted tremendous research interests due to their wide applications in wearable electronics and smart robots. The easy-to-obtain fabrication and stable signal output are meaningful for the practical application of flexible pressure sensors. The graphene/polyurethane foam composites are prepared to develop a convenient method for piezo-resistive devices with simple structure and outstanding sensing performance. Graphene oxide was prepared through the modified Hummers method. Polyurethane foam was kept to soak in the obtained graphene oxide aqueous solution and then dried. After that, reduced graphene oxide/polyurethane composite foam has been fabricated under air phase reduction by hydrazine hydrate vapor. The chemical components and micro morphologies of the prepared samples have been observed by using FT-IR and scanning electron microscopy (SEM). The results predicted that the graphene is tightly adhered to the bare surface of the pores. The pressure sensing performance has been also evaluated by measuring the sensitivity, durability, and response time. The results indicate that the value of sensitivity under the range of 0–6 kPa and 6–25 kPa are 0.17 kPa−1 and 0.005 kPa−1, respectively. Cycling stability test has been performed 30 times under three varying pressures. The signal output just exhibits slight fluctuations, which represents the good cycling stability of the pressure sensor. At the same stage, the response time of loading and unloading of 20 g weight turned out to be about 300 ms. These consequences showed the superiority of graphene/polyurethane composite foam while applied in piezo-resistive devices including wide sensitive pressure range, high sensitivity, outstanding durability, and fast response.


2019 ◽  
Vol 67 (3) ◽  
pp. 155-167 ◽  
Author(s):  
Haitao Liu

The acoustic properties of the Helmholtz resonators with conical necks, which have broad acoustic attenuation band performance in the low frequency range, are investigated in this study. In order to investigate its wide-band acoustic attenuation mechanism, three-dimensional finite element models for the Helmholtz resonators with different necks are built respectively. The acoustic performance prediction model based on the one-dimensional analytical approach with acoustic length corrections is built to calculate the transmission loss results more efficiently, and the formula for calculating the resonance frequency is also derived. Then, the prediction model and the formula are verified by finite element method and experiment, which show good agreements. As a result, the prediction model is applied to analyze the sound attenuation properties of the Helmholtz resonators with conical necks, and the results show that the acoustic attenuation bandwidth in the low frequency range is improved by increasing the taper angle of the neck. At last, the approaches for the Helmholtz resonators with conical necks are applied to design an actual middle silencer of a passenger car. The results show that the designed middle silencer performs much better than the original one, which can effectively eliminate the exhaust order noise to meet the standard of exhaust noise control. The test results fully reveal that the Helmholtz resonators with conical necks in the muffler can play a better role in eliminating exhaust order noise, and the approaches proposed in this article can effectively guide the design of Helmholtz resonators with conical necks.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 725
Author(s):  
Vitor Hugo Carneiro ◽  
Hélder Puga ◽  
José Meireles

Aluminum-based cellular solids are promising lightweight structural materials considering their high specific strength and vibration damping, being potential candidates for future railway vehicles with enhanced riding comfort and low fuel consumption. The filling of these lattices with polymer-based (i.e., polyurethane) foams may further improve the overall vibration/noise-damping without significantly increasing their density. This study explores the dynamic (i.e., frequency response) and acoustic properties of unfilled and polyurethane-filled aluminum cellular solids to characterize their behavior and explore their benefits in terms of vibration and noise-damping. It is shown that polyurethane filling can increase the vibration damping and transmission loss, especially if the infiltration process uses flexible foams. Considering sound reflection, however, it is shown that polyurethane filled samples (0.27–0.30 at 300 Hz) tend to display lower values of sound absorption coefficient relatively to unfilled samples (0.75 at 600 Hz), is this attributed to a reduction in overall porosity, tortuosity and flow resistivity. Foam-filled samples (43–44 dB at 700–1200 Hz) were shown to be more suitable to reduce sound transmission rather than reflection than unfilled samples (21 dB at 700 Hz). It was shown that the morphology of these cellular solids might be optimized depending on the desired application: (i) unfilled aluminum cellular solids are appropriate to mitigate internal noises due to their high sound absorption coefficient; and (ii) PU filled cellular solids are appropriate to prevent exterior noises and vibration damping due to their high transmission loss in a wide range of frequencies and vibration damping.


Sign in / Sign up

Export Citation Format

Share Document