scholarly journals The Effect of the Salt Water Aging on the Mechanical Properties of Epoxy Adhesives Compounds

Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 843 ◽  
Author(s):  
Anna Rudawska

The objective of this study is to compare the effect of selected operating factors on the mechanical properties of epoxy adhesive compounds aged in salt water. Five different water environments were tested: tap water, normal seawater (reference salinity value), seawater with double reference salinity value, seawater with half of the reference salinity and seawater with a quarter of the reference salinity value. Samples of two different adhesive compounds were prepared using the epoxy resin and triethylenetetramine curing agent. One of the compounds was filled with calcium carbonate. The samples were aged in five different water environments for three months, one month and one week, respectively. Mechanical properties of the cured adhesive compound samples were determined via strength tests performed on the Zwick/Roell Z150 testing machine in compliance with the EN ISO 604 standard. The objective of the experiments was to determine the effect of different seawater environments on selected mechanical properties (including strength) of the fabricated adhesive compounds.

2021 ◽  
Vol 2 (1) ◽  
pp. 108-126
Author(s):  
Anna Rudawska

The article presents the issues of the mechanical properties of epoxy adhesives and the adhesive joints strength of steel sheets which were made using the epoxy adhesives. The aim of the paper is to study the mechanical properties of epoxy adhesive of different epoxy resin/curing agent ratios (within and above the recommended stoichiometric ratio) and their effect on mechanical properties of adhesive joints of steel sheets. In experimental tests three types of epoxy adhesives, containing a low molecular weight epoxy resin based on bisphenol A and polyamide curing agent, were used. A single-lap adhesive joint type of stainless-steel sheets was also applied. Two types of strength test were used: the compressive strength tests (DIN EN 196-1) for epoxy adhesive samples and the shear strength tests (DIN EN 1465) for adhesive joints. Both the analysis of the strength results of the samples of epoxy adhesive and adhesive joints as well as the failure analysis was carried out. On the basis of the results of strength tests it can be stated that the greatest deformation occurred for the samples of epoxy adhesive containing the modified epoxy resin (epoxy number—0.40) and the polyamide curing agent, and the smallest for the samples of epoxy adhesive containing the basic epoxy resin (epoxy number—0.49–0.52) and the polyamide curing agent. The epoxy adhesives with a smaller amount of curing agent were characterized by higher strength. This applies to all analyzed epoxy resins. The same dependences were obtained for the strength of adhesive joints of steel sheets made of the analyzed epoxy adhesive.


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 804 ◽  
Author(s):  
Anna Rudawska

The aim of this study was to analyse the impact of the adhesive samples seasoning conditions (temperature and time) on selected mechanical properties of four epoxy adhesive compounds (two unmodified and two modified ones). The samples were made of Epidian 53 epoxy resin mixed with the two different amine curing agents in appropriate stoichiometric proportions. A filler in the form of calcium carbonate (CaCO3) powder was used as a modifier. The adhesive compound samples were cured for seven days. Six seasoning variants were used. Four of them were related with the seasoning time at ambient temperature of 24 ± 2 °C for: one month, two months, five months and eight months, respectively. Two other variants were related with seasoning at negative temperature (−10 ± 2 °C) for one month. The last variant (F) also included seasoning at ambient temperature (24 ± 2 °C) for five months right after seasoning in negative temperature. Cured and cylinder-shaped adhesive compound samples were subjected to compressive strength tests (according to the ISO 604 standard). The strength tests were performed using a Zwick/Roell Z150 testing machine. Based on the tests, it was observed that both temperature and time of seasoning influenced the adhesive’s mechanical properties. In the perspective of eight months, these changes were relatively minor for the samples seasoned at ambient temperature. The adhesive samples prepared for the tests were especially sensitive to negative temperature.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 218 ◽  
Author(s):  
Anna Rudawska ◽  
Valentina Brunella

This study investigates the effect of operating factors such as seasoning in water solution containing iron (II) sulfate—FeSO4 (5 different water solution variants were tested) on the mechanical properties of an adhesive compound made of epoxy resin and amine curing agent, in a ratio of 100 g resin to 12 g curing agent. Strength tests of cured adhesive compound samples were performed on the Zwick/Roell Z150 testing machine in compliance with the EN ISO 604 standard. During the tests, compression modulus, compressive strength and compressive strain were measured. Obtained results served as a basis for analyzing the effect of a water environment containing iron sulfate on a given adhesive compound. It has been found that too high iron sulfate content in water has a negative effect on the mechanical properties of adhesive compound samples.


2016 ◽  
Vol 32 (6) ◽  
pp. 673-682 ◽  
Author(s):  
H.-K. Liu ◽  
Y.-C. Wang ◽  
T.-H. Huang

Abstract2-D graphene nanosheets (GNS) not only have superior mechanical properties, but stacking of GNS in composites is expected to inhibit moisture absorption. In this paper, moisture effect on tensile strength of graphene/epoxy nanocomposites is investigated. Two kinds of graphene reinforcements are used including graphene oxide (GO) and reduced graphene oxide (RGO) with reinforcement weight fraction WGO or WRGO in the range of 0.5 to 3.0wt%. A dispersion agent acetone is added in nanocomposites to enhance graphene dispersion. To evaluate moisture influence, those nanocomposites are soaked in two kinds of liquid including deionized water (DIW) and salt water (saline solution) for seven kinds of soaking periods of time including 24, 48, 72, 100, 400 hours, 30 days, and 60 days. After soaking test, diffusion coefficients of various composites are evaluated; besides tensile strengths of composites are measured by microforce testing machine. In order to correlate the strength with microstructure evolution, several techniques are adopted to analyze morphologies and functionalities of reinforcements and fracture surface of composites. They include Raman spectroscope, X-ray photoelectron spectroscope, and SEM. 2-D GNS are found to effectively enhance nanocomposites by moisture attack, and their corresponding reinforcing mechanisms are proposed.


2022 ◽  
Vol 3 (1) ◽  
pp. 64-77
Author(s):  
Anna Rudawska ◽  
Magd Abdel Wahab ◽  
Miroslav Müller ◽  
Dana Stančeková

This paper presents issues related to the determination of the selected mechanical properties of adhesive joints made of polymeric pipes and the evaluation of the leak-tightness of the adhesive joints. The article attempts to demonstrate that the type of adhesive may affect the quality of adhesive joints in terms of both tightness and strength of joints. Five types of the polymer pipes differing in a polypropylene and a polyvinyl chloride, diameter and a wall thickness were used in the experiments. Two types of the adhesives were used to make the adhesive joints: Loctite 3430 A&B Hysol, a two-component epoxy adhesive, and Loctite 406, a one-component cyanoacrylate adhesive. Based on the leak-tightness tests results, it was possible to determine the quality of their adhesive joints without damaging the samples, while their tensile strength was determined through the strength tests. The tests performed allowed for the conclusion that the use of the polyvinyl chloride pipes and Loctite 406 one-component adhesive is recommended for this type of adhesive joints.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1324
Author(s):  
Anna Rudawska ◽  
Mariaenrica Frigione

The effects of aging exposures to three non-saline aqueous environments on the compressive mechanical properties of a calcium carbonate-filled bisphenolic epoxy adhesive, cold-cured with the addition of two curing agents suitable for the cure at ambient temperature (i.e., Mannich base and triethylenetetramine), were assessed. The amount of the added filler (CaCO3) varied from 1 to 3 g per 100 g of resin; the immersion times in each of the selected medium varied from 1 to 10 months. It was found that the mechanical properties measured in compression mode on cylindrical specimens of unfilled and CaCO3-loaded epoxy were scarcely influenced by the kind of curing agent employed; only the compressive modulus was limitedly affected by this parameter. Referring to the behavior when aged in water, the CaCO3-filled epoxies displayed noticeable growths in modulus, small reductions in strength, and limited variations in strain, with a certain influence of the exposure time, especially when comparing the properties at the lowest time with those at medium–long times. On the basis of the results of statistical MANOVA analysis, it can be concluded that among the compositional factors (i.e., the type of curing agent employed to cure the epoxy compounds and the micro-filler content), only the amount of CaCO3 filler significantly affects the compressive modulus.


2019 ◽  
Vol 108 ◽  
pp. 26-38
Author(s):  
ŁUKASZ MATWIEJ ◽  
ROBERT KŁOS ◽  
MIROSŁAW BONOWSKI

Design of a snap connector to connect panel elements. The aim of this study was to design, manufacture and verify the tensile strength of a prototype snap connector to be used to connect panel elements. Firstly, analyses were conducted on solutions of commercially available designs for connectors invisible from the cabinet’s outside and those with minimized visibility. While searching for the best concept of connector design, three proposals were prepared, of which – after thorough analysis of design – one concept was selected. In the next step, the adopted solution was improved so that the connector met the previously formulated design requirements. In the course of further analyses, the causes and effects of failure were verified in order to limit or eliminate potential defects. In the next stage of the study, numerical calculations were conducted for the nut and the connector, concerning tensile strength, using the Autodesk Simulation Multiphysics program. After a prototype connector was manufactured, tensile strength tests were conducted on the connector using a strength testing machine. Experiments verified the correctness of the developed design in terms of geometry and the physico-mechanical properties of materials of individual elements, and resulted in possible changes proposed in the design of the final connector product.


2020 ◽  
Vol 849 ◽  
pp. 78-83
Author(s):  
Muh. Wahyu Syabani ◽  
Ina Amaliyana ◽  
Indri Hermiyati ◽  
Yayat Iman Supriyatna

The main components of artificial leather were polymer, plasticizer, stabilizer, and filler. Silica is one of the commons reinforcing filler for many composites. Meanwhile, amorphous silica is usually precipitate in geothermal power plants and become solid waste in large amounts. The aim of this study is to evaluate the mechanical properties of PVC-based artificial leather by utilizing geothermal silica as reinforcing filler. The plastisol was prepared by mixing the PVC, plasticizer, co-plasticizer, stabilizer, and filler with the amount of 100, 60, 3, 0.5 and 25 phr respectively. Commercial-calcium carbonate and geothermal-silica were used as filler for each sample formulation, then the non-filler plastisol also prepared as a reference. Artificial leather made by coating the release paper using the plastisol then heated at 190°C. The mechanical properties were investigated using a universal testing machine for the elongation, tensile strength and separation force. The surface morphology of each sample were analyzed using SEM. The results show us that the geothermal silica filled artificial leather has better elongation, tensile strength, and separation force compared to the calcium carbonate since there are stronger filler-polymer bonds formed. Therefore geothermal silica has high potential as filler for artificial leather, thus gives an alternative solution for the solid waste problem in geothermal power plant and also provide low-cost source of reinforcing fillers for artificial leather industries.


2014 ◽  
Vol 1053 ◽  
pp. 257-262
Author(s):  
Mei Li ◽  
Xiang Yu Zhao ◽  
Wei Shao ◽  
Chuan Bao Ma ◽  
Rui Xue Zheng ◽  
...  

An epoxy adhesive and its curing agent are tested using differential scaning calorimetry under different atmospheres and after different exposure times to natural air to analyze its thermal properties. The results show that after the pure epoxy, the curing agent and the adhesive mixture of them are exposed in natural air for different period of time, all show different levels of decline in thermal stability and more complicated reactions when tested in the DSC and TGA in O2 and air, while the thermal properties remain stable when they are tested in an inert gas like N2. And according to the mechanical property tests and SEM results, the mechanical properties of the adhesive mixture in N2 are better than that in air. The results indicate that inert gas can protect the property of this kind of adhesive and thus increase its bond strength.


2018 ◽  
Vol 10 ◽  
pp. 02028
Author(s):  
Urszula Sadowskaʼ ◽  
Andrzej Żabiński ◽  
Krzysztof Mudryk

The objective of the conducted study was to evaluate the impact of the pressure agglomeration process of peppermint herb on the mechanical properties of the obtained product. The separated fractions of peppermint with 0.5-2.5 and 2.5-5 mm particles were compacted using a hydraulic press Fritz Heckert EU 20, with pressure 50, 100, 150 and 200 MPa. A closed matrix with the compression chamber diameter of 15.6 mm was used. Every time, a 2-g herb sample (corresponding to the weight of tea used for the production of tea bags) was poured into the matrix. Thus, compacted herb in the form of a straight cylinder was obtained. When producing the agglomerate compaction work was determined. Strength tests of the obtained agglomerate were conducted using the MTS Insight 2 testing machine. The density of the produced agglomerate, its compaction level and strength in the Brazilian test was calculated. The obtained results indicate that the values of the tested parameters increase with the increase of pressure in the tested range, yet differences occur between the tested herb fractions. Typically, the agglomerate produced from 0.5-2.5 mm fraction is characterized by a greater density, and the higher level of agglomerate compaction is obtained using 2.5-5 mm herb fraction. The highest strength determined using Brazilian test was determined for agglomerate produced from 0.5-5 mm peppermint herb fraction at 200 MPa pressure and 0.5-2.5 mm fraction using 150 and 200 MPa pressure.


Sign in / Sign up

Export Citation Format

Share Document