scholarly journals Polyvinyl Alcohol/Calcium Carbonate Nanocomposites as Efficient and Cost-Effective Cationic Dye Adsorbents

Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2179
Author(s):  
Davoud Jahani ◽  
Amin Nazari ◽  
Jaber Ghourbanpour ◽  
Amir Ameli

A novel polyvinyl alcohol (PVA)/calcium carbonate-based double-layer cationic dye adsorbent was developed. Polyvinyl alcohol (50 wt %) and calcium carbonate (50 wt %) were used together with borax as a cross-linking agent. The nanocomposite was prepared using only water, without the need for any toxic solvent or hazardous chemical. The final samples were obtained by the solvent casting method. The nanocomposite adsorbent was characterized using a Fourier transform infrared (FTIR) spectroscope and a scanning electron microscope (SEM). The adsorption performance on two cationic dyes, i.e., methylene blue and safranin was studied. Dye adsorption was quantified by measuring the nanocomposite swelling, contact time, and dye concentration. Pseudo first-order and pseudo second-order kinetic models as well as intraparticle diffusion model were used to model the adsorption kinetics. Moreover, the isotherm dye adsorption was investigated by Langmuir and Freundlich models. The results revealed that the developed nanocomposite has relatively high adsorption efficiency and short adsorption time and retains its performance after several successive absorption–desorption processes. The results also showed that the pseudo-second-order model best describes the adsorption kinetics, and the Freundlich isotherm model has a better compatibility with the experimental data. Finally, an adsorption mechanism was proposed for the dye removal process. The developed PVA/CaCO3 nanocomposite can be potentially used for efficient dye removal in wastewater treatments.

2012 ◽  
Vol 446-449 ◽  
pp. 2960-2963
Author(s):  
Jing Yan Song ◽  
Jing Yang

The adsorption properties of the attapulgite and the rectorite were investigated by removal of a cationic dye, methylene blue (MB) from aqueous solution. The attapulgite and the rectorite were characterized by Fourier transform infrared (FT-IR) spectroscopy, Brunauer-Emmett-Teller (BET) and scanning electron microscopy (SEM). The analysis of the isotherm equilibrium data using the Langmuir and Freundlich equations showed that the data fitted better with Langmuir model. Pseudo-first-order and pseudo-second-order models were considered to evaluate the rate parameters. The experimental data were well described by the pseudo-second-order kinetic model. The results indicate that the attapulgite exhibited higher adsorption capacity for MB than rectorite and could be employed as a low-cost alternative in wastewater treatment for the removal of cationic dyes.


2017 ◽  
Vol 23 (1) ◽  
pp. 21-29 ◽  
Author(s):  
Javad Ahmadishoar ◽  
Hajir Bahrami ◽  
Barahman Movassagh ◽  
Hosein Amirshahi ◽  
Mokhtar Arami

In this study modified montmorillonite was used as an adsorbent for the removal of two selected disperse dyes i.e., Disperse Blue 56 (DB) and Disperse Red 135 (DR) from dye dispersions. The adsorption equilibrium data of dyes adsorption were investigated by using Nernst, Freundlich and Langmuir isotherm models. The adsorption kinetics was analyzed by using different models including pseudo-first-order, pseudo-second-order, Elovich and Intraparticle diffusion model. The Freundlich isotherm was found to be the most appropriate model for describing the sorption of the dyes on modified nanoclay. The best fit to the experimental results was obtained by using the pseudo-second-order kinetic equation, which satisfactorily described the process of dye adsorption. Although different kinetic models may control the rate of the adsorption process, the results indicated that the main rate limiting step was the intraparticle diffusion. The results showed that the proposed modified montmorillonite could be used as an effective adsorbent for the removal of disperse dyes even from highly concentrated dispersions.


Author(s):  
Jurgita Seniūnaitė ◽  
Rasa Vaiškūnaitė ◽  
Kristina Bazienė

Research studies on the adsorption kinetics are conducted in order to determine the absorption time of heavy metals on coffee grounds from liquid. The models of adsorption kinetics and adsorption diffusion are based on mathe-matical models (Cho et al. 2005). The adsorption kinetics can provide information on the mechanisms occurring be-tween adsorbates and adsorbents and give an understanding of the adsorption process. In the mathematical modelling of processes, Lagergren’s pseudo-first- and pseudo-second-order kinetics and the intra-particle diffusion models are usually applied. The mathematical modelling has shown that the kinetics of the adsorption process of heavy metals (copper (Cu) and lead (Pb)) is more appropriately described by the Lagergren’s pseudo-second-order kinetic model. The kinetic constants (k2Cu = 0.117; k2Pb = 0,037 min−1) and the sorption process speed (k2qeCu = 0.0058–0.4975; k2qePb = 0.021–0.1661 mg/g per min) were calculated. After completing the mathematical modelling it was calculated that the Langmuir isotherm better reflects the sorption processes of copper (Cu) (R2 = 0.950), whilst the Freundlich isotherm – the sorption processes of lead (Pb) (R2 = 0.925). The difference between the mathematically modelled and experimen-tally obtained sorption capacities for removal of heavy metals on coffee grounds from aqueous solutions is 0.059–0.164 mg/l for copper and 0.004–0.285 mg/l for lead. Residual concentrations of metals in a solution showed difference of 1.01 and 0.96 mg/l, respectively.


2012 ◽  
Vol 549 ◽  
pp. 278-282 ◽  
Author(s):  
Cheng Chen ◽  
Guang Xian Zhang ◽  
Feng Xiu Zhang ◽  
Hui Zheng

With octyl butyl dimethyl ammonium bromide (OBDAB) as accelerant, adsorption kinetics of dyeing silk with three reactive dyes was studied in this paper. As concentration of OBDAB increased, the dye-uptake rate increased. The highest dye-uptake rates of three reactive dyes could reach to 89.40%~98.98% and the concentration of OBDAB was only 6-8g/L. This showed OBDAB was an effective accelerant. Pseudo first- and second-order kinetic models were used to analyze the adsorption kinetic data. The experimental data were found to follow the second-order kinetic model. Meanwhile, the initial dye adsorption rates of reactive red dye B-3BF, reactive yellow dye B-4RFN and reactive orange dye B-2RLN increased as temperature increased, and the activation energy of them were found respectively to be 28.42,13.14,32.90 kJ/mol.The positive values of and obtained indicated that reactive dyes adsorption with OBDAB as accelerant was an endothermic process. The conclusion showed OBDAB was a potential accelerant.


2013 ◽  
Vol 11 (1) ◽  
pp. 501-509
Author(s):  
Xueyong Zhou ◽  
Huifen Liu ◽  
Xianzhi Lu ◽  
Lili Shi ◽  
Jianchao Hao

Abstract Genetically modified crops, which produce insecticidal toxins from Bacillus thuringiensis (Bt), release the toxins into soils. Although the phenomena of persistence and degradation of Bt toxins have been documented, the effect of heavy metals on the fate of these toxins in soil has not yet been elucidated. The effect of Pb(II) on the adsorption behaviors of Bt toxin in brown and red soil was investigated. With the increase of Pb(II) concentration, the adsorption of Bt toxin in brown and red soil increased. The Langmuir, Freundlich and Dubinin–Radushkevich (D–R) isotherm models gave better fitting to the experimental equilibrium data. Values of KL, KF and n increased but RL decreased with the increase of Pb(II) concentration, showing that the Pb(II) promoted the adsorption of Bt toxin in soils. The mean free energy of adsorption (E) ranged from 10.43 to 16.44 kJ mol−1 may correspond to a chemical ion-exchange mechanism. Three kinds of kinetic models, the pseudo-first-order, pseudo-second-order and intraparticle diffusion model, were used to test the experimental data. The results showed that the adsorption of Bt toxin by brown and red soil followed the pseudo-second-order kinetic model. The addition of Pb(II) during the adsorption led to a decrease of the desorption of Bt toxin from soils, indicating that the residual risk of Bt toxin may become larger if soil is polluted by lead.


Author(s):  
Armin Geroeeyan ◽  
Ali Niazi ◽  
Elaheh Konoz

Abstract In the present research, the removal of Basic Orange 2 (BO2) dye using alkaline-modified clay nanoparticles was studied. To characterize the adsorbent, XRD, FTIR, FESEM, EDX, BET and BJH analyses were performed. The effect of the variables influencing the dye adsorption process such as adsorbent dose, contact time, pH, stirring rate, temperature, and initial dye concentration was investigated. Furthermore, the high efficiency of Ni2+ removal indicated that it is possible to remove both dye and metal cation under the same optimum conditions. The experimental data were analyzed by Langmuir and Freundlich isotherm models. Fitting the experimental data to Langmuir isotherm indicated that the monolayer adsorption of dye occurred at homogeneous sites. Experimental data were also analyzed with pseudo-first-order, pseudo-second-order, and intra-particle diffusion kinetic equations for kinetic modeling of the dye removal process. The adsorption results indicated that the process follows a pseudo-second-order kinetic model. The thermodynamic parameters of the dye adsorption process such as enthalpy, entropy, and Gibbs free energy changes were calculated and revealed that the adsorption process was spontaneous and endothermic in nature. The results presented the high potential of the modified nanoclay as a cost-effective adsorbent for the removal of BO2 dye and Ni2+ from aqueous medium.


2021 ◽  
Author(s):  
Vani Gandham ◽  
UMA Addepally ◽  
Bala Narsaiah T

Abstract Malachite Green (MG), a cationic synthetic dye is considered hazardous when discharged into the water bodies without any adequate treatment. It can affect the multiple segments of the environment leading to irreversible persistent changes. So, there is a need for remediation with cost-effective method to remove dyes from effluents. Adsorption is one such technique to remove dyes from wastewater and is effective and economical. The present study describes the removal of MG cationic dye from wastewater using eco-friendly and biodegradable lignin extracted from hydrothermally treated rice straw by adsorption process. Functional group analysis and morphological characterisation was done to the extracted lignin after quantification. The maximum percent removal of MG 92 ± 0.2 % was observed from a series of batch experiments at optimum process parameters of: contact time 80 min, initial dye concentration 50 ppm, lignin dosage 0.25g, pH 7, temperature 300c and with 100 rpm agitation speed. The adsorption kinetics and isotherms were determined for the experimental data using four kinetic models (pseudo-first-order, second order, pseudo-second-order and intra-particle diffusion model) and two isotherm models (Langmuir and Freundlich). The results suggested that the kinetics data fit to the pseudo-second-order kinetic model with the maximum adsorption capacity 36.7 mg/g and the two isotherm models were applicable for the adsorption of MG onto the lignin. Additionally, the thermodynamic parameters ΔSo, ΔHo and ΔGo were evaluated. Therefore, lignin which is an environmental friendly and low cost carbon material that can be used as an adsorbent for dye removal.


2021 ◽  
Vol 9 ◽  
Author(s):  
Wenbo Wang ◽  
Xiangyu Liu ◽  
Xue Wang ◽  
Li Zong ◽  
Yuru Kang ◽  
...  

A porous semi-interpenetrating network (semi-IPN) hydrogel adsorbent with excellent adsorption properties and removal efficiency towards Pb(II) was prepared by a facile grafting polymerization reaction in aqueous medium using natural biopolymer sodium alginate (SA) as the main chains, sodium acrylate (NaA) as the monomers, and poly(vinyl alcohol) (PVA) as the semi-IPN component. FTIR, TGA and SEM analyses confirm that NaA monomers were grafted onto the macromolecular chains of SA, and PVA chains were interpenetrated and entangled with the crosslinked network. The incorporation of PVA facilitates to form pores on the surface of hydrogel adsorbent. The semi-IPN hydrogel containing 2 wt% of PVA exhibits high adsorption capacity and fast adsorption rate for Pb(II). The best adsorption capacity reaches 784.97 mg/g, and the optimal removal rate reaches 98.39% (adsorbent dosage, 2 g/L). In addition, the incorporation of PVA improved the gel strength of hydrogel, and the storage modulus of hydrogel increased by 19.4% after incorporating 2 wt% of PVA. The increase of gel strength facilitates to improve the reusability of hydrogel. After 5 times of regeneration, the adsorption capacity of SA-g-PNaA decreased by 23.2%, while the adsorption capacity of semi-IPN hydrogel only decreased by 10.8%. The adsorption kinetics of the hydrogel in the initial stage (the moment when the adsorbent contacts solution) and the second stage are fitted by segmentation. It is intriguing that the adsorption kinetics fits well with both pseudo-second-order kinetic model and pseudo-first-order model before 60 s, while only fits well with pseudo-second-order adsorption model in the whole adsorption process. The chemical complexing adsorption mainly contribute to the efficient capturing of Pb(II).


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1053
Author(s):  
Krzysztof Cendrowski ◽  
Karolina Opała ◽  
Ewa Mijowska

In this contribution, the synthesis of the metal−organic framework (MOF) based on lanthanum that exhibits trigonal prism shape is presented. The length of a single side of this structure ranges from 2 to 10 μm. The carbonized lanthanum-based organic framework (CMOF–La) maintained the original shape. However, the lanthanum oxide was reshaped in the form of rods during the carbonization. It resulted in the creation of parallel arranged channels. The unique structure of the carbonized structure motivated us to reveal its adsorption performance. Therefore, the adsorption kinetics of acid red 18 onto a carbonized metal−organic framework were conducted. Various physicochemical parameters such as initial dye concentration and pH of dye solution were investigated in an adsorption process. The adsorption was found to decrease with an increase in initial dye concentration. In addition, the increase in adsorption capacity was noticed when the solution was changed to basic. Optimal conditions were obtained at a low pH. Kinetic adsorption data were analyzed using the pseudo-first-order kinetic model, the pseudo-second-order kinetic model and the intraparticle diffusion model. The adsorption kinetics were well fitted using a pseudo-second-order kinetic model. It was found that the adsorption of anionic dye onto CMOF–La occurs by hydrophobic interactions between carbonized metal-organic framework and acid red 18.


2017 ◽  
Vol 19 (3) ◽  
pp. 120-129 ◽  
Author(s):  
Wojciech Konicki ◽  
Małgorzata Aleksandrzak ◽  
Ewa Mijowska

Abstract In this study, the adsorption of Ni2+ and Fe3+ metal ions from aqueous solutions onto graphene oxide (GO) have been explored. The effects of various experimental factors such as pH of the solution, initial metal ion concentration and temperature were evaluated. The kinetic, equilibrium and thermodynamic studies were also investigated. The adsorption rate data were analyzed using the pseudo-first-order kinetic model, the pseudo-second-order kinetic model and the intraparticle diffusion model. Kinetic studies indicate that the adsorption of both ions follows the pseudo-second-order kinetics. The isotherms of adsorption data were analyzed by adsorption isotherm models such as Langmuir and Freundlich. Equilibrium data fitted well with the Langmuir model. The maximum adsorption capacities of Ni2+ and Fe3+ onto GO were 35.6 and 27.3 mg g−1, respectively. In addition, various thermodynamic parameters, such as enthalpy (ΔHO), entropy (ΔSO) and Gibbs free energy (ΔGO), were calculated.


Sign in / Sign up

Export Citation Format

Share Document