scholarly journals Manufacturing, Characterisation and Mechanical Analysis of Polyacrylonitrile Membranes

Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2378
Author(s):  
Mertol Tüfekci ◽  
Sevgi Güneş Durak ◽  
İnci Pir ◽  
Türkan Ormancı Acar ◽  
Güler Türkoğlu Demirkol ◽  
...  

To investigate the effect of polyvinylpyrrolidone (PVP) addition and consequently porosity, two different sets of membranes are manufactured, since PVP is a widely used poring agent which has an impact on the mechanical properties of the membrane material. The first set (PAN 1) includes polyacrylonitrile (PAN) and the necessary solvent while the second set (PAN 2) is made of PAN and PVP. These membranes are put through several characterisation processes including tensile testing. The obtained data are used to model the static behaviour of the membranes with different geometries but similar loading and boundary conditions that represent their operating conditions. This modelling process is undertaken by using the finite element method. The main idea is to investigate how geometry affects the load-carrying capacity of the membranes. Alongside membrane modelling, their materials are modelled with representative elements with hexagonal and rectangular pore arrays (RE) to understand the impact of porosity on the mechanical properties. Exploring the results, the best geometry is found as the elliptic membrane with the aspect ratio 4 and the better RE as the hexagonal array which can predict the elastic properties with an approximate error of 12%.

Author(s):  
Mertol Tüfekci ◽  
Sevgi Güneş Durak ◽  
İnci Pir ◽  
Türkan Ormancı Acar ◽  
Güler Türkoğlu Demirkol ◽  
...  

To investigate the effect of Polyvinylpyrrolidone (PVP) addition and consequently porosity, two different sets of membranes are manufactured, since PVP is a widely used poring agent which has an impact on the mechanical properties of the membrane material. The first set (PAN 1) includes PAN and the necessary solvent while the second set (PAN 2) is made of PAN and PVP. These membranes are put through several characterisation processes including tensile testing. The obtained data are used to model the static behaviour of the membranes with different geometries, but similar loading and boundary conditions that represent their operating conditions. This modelling process is undertaken by using finite element method. The main idea is to investigate how geometry affects the load-carrying capacity of the membranes. Alongside membrane modelling, their materials are modelled with representative elements with hexagonal and rectangular pore arrays (RE) to understand the impact of porosity on the mechanical properties. Exploring the results, the best geometry is found as the elliptic membrane with the aspect ratio 4 and the better RE as the hexagonal array which can predict the elastic properties with an approximate error of 12%.


Author(s):  
Mertol Tüfekci ◽  
Sevgi Güneş Durak ◽  
İnci Pir ◽  
Türkan Ormancı Acar ◽  
Güler Türkoğlu Demirkol ◽  
...  

To investigate the effect of Polyvinylpyrrolidone (PVP) addition and consequently porosity, two different sets of membranes are manufactured, since PVP is a widely used poring agent which has an impact on the mechanical properties of the membrane material. The first set (PAN 1) includes PAN and the necessary solvent while the second set (PAN 2) is made of PAN and PVP. These membranes are put through several characterisation processes including tensile testing. The obtained data are used to model the static behaviour of the membranes with different geometries, but similar loading and boundary conditions that represent their operating conditions. This modelling process is undertaken by using finite element method. The main idea is to investigate how geometry affects the load-carrying capacity of the membranes. Alongside membrane modelling, their materials are modelled with representative elements with hexagonal and rectangular pore arrays (RE) to understand the impact of porosity on the mechanical properties. Exploring the results, the best geometry is found as the elliptic membrane with the aspect ratio 4 and the better RE as the hexagonal array which can predict the elastic properties with an approximate error of 12%.


Author(s):  
Mertol Tüfekci ◽  
Sevgi Güneş Durak ◽  
İnci Pir ◽  
Türkan Ormancı Acar ◽  
Güler Türkoğlu Demirkol ◽  
...  

In recent years, usage of membranes is quite common in water and wastewater treatment. Polyacrylonitrile (PAN) is a polymeric material used in membrane production. To investigate the effect of Polyvinylpyrrolidone (PVP) addition and consequently porosity, two different sets of membranes are manufactured, since PVP is a widely used poring agent which has an impact on the mechanical properties of the membrane material. The first set (PAN 1) includes PAN and the necessary solvent while the second set (PAN 2) is made of PAN and PVP. These membranes are put through several characterisation processes including tensile testing. The obtained data are used to model the static behaviour of the membranes with different geometries, but similar loading and boundary conditions that represent their operating conditions. This modelling process is undertaken by using finite element method. The main idea is to investigate how geometry affects the load-carrying capacity of the membranes. Alongside membrane modelling, their materials are modelled with representative elements (RE) to understand the impact of porosity on the mechanical properties.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3140
Author(s):  
Kamil Dydek ◽  
Anna Boczkowska ◽  
Rafał Kozera ◽  
Paweł Durałek ◽  
Łukasz Sarniak ◽  
...  

The main aim of this work was the investigation of the possibility of replacing the heavy metallic meshes applied onto the composite structure in airplanes for lightning strike protection with a thin film of Tuball single-wall carbon nanotubes in the form of ultra-light, conductive paper. The Tuball paper studied contained 75 wt% or 90 wt% of carbon nanotubes and was applied on the top of carbon fibre reinforced polymer before fabrication of flat panels. First, the electrical conductivity, impact resistance and thermo-mechanical properties of modified laminates were measured and compared with the reference values. Then, flat panels with selected Tuball paper, expanded copper foil and reference panels were fabricated for lightning strike tests. The effectiveness of lightning strike protection was evaluated by using the ultrasonic phased-array technique. It was found that the introduction of Tuball paper on the laminates surface improved both the surface and the volume electrical conductivity by 8800% and 300%, respectively. The impact resistance was tested in two directions, perpendicular and parallel to the carbon fibres, and the values increased by 9.8% and 44%, respectively. The dynamic thermo-mechanical analysis showed higher stiffness and a slight increase in glass transition temperature of the modified laminates. Ultrasonic investigation after lightning strike tests showed that the effectiveness of Tuball paper is comparable to expanded copper foil.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1242
Author(s):  
Olga Mysiukiewicz ◽  
Paulina Kosmela ◽  
Mateusz Barczewski ◽  
Aleksander Hejna

Investigations related to polymer/metal composites are often limited to the analysis of the electrical and thermal conductivity of the materials. The presented study aims to analyze the impact of aluminum (Al) filler content (from 1 to 20 wt%) on the rarely investigated properties of composites based on the high-density polyethylene (HDPE) matrix. The crystalline structure, rheological (melt flow index and oscillatory rheometry), thermal (differential scanning calorimetry), as well as static (tensile tests, hardness, rebound resilience) and dynamic (dynamical mechanical analysis) mechanical properties of composites were investigated. The incorporation of 1 and 2 wt% of aluminum filler resulted in small enhancements of mechanical properties, while loadings of 5 and 10 wt% provided materials with a similar performance to neat HDPE. Such results were supported by the lack of disturbances in the rheological behavior of composites. The presented results indicate that a significant content of aluminum filler may be introduced into the HDPE matrix without additional pre-treatment and does not cause the deterioration of composites’ performance, which should be considered beneficial when engineering PE/metal composites.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
C. I. Papadopoulos ◽  
L. Kaiktsis ◽  
M. Fillon

The paper presents a detailed computational study of flow patterns and performance indices in a dimpled parallel thrust bearing. The bearing consists of eight pads; the stator surface of each pad is partially textured with rectangular dimples, aiming at maximizing the load carrying capacity. The bearing tribological performance is characterized by means of computational fluid dynamics (CFD) simulations, based on the numerical solution of the Navier–Stokes and energy equations for incompressible flow. Realistic boundary conditions are implemented. The effects of operating conditions and texture design are studied for the case of isothermal flow. First, for a reference texture pattern, the effects of varying operating conditions, in particular minimum film thickness (thrust load), rotational speed and feeding oil pressure are investigated. Next, the effects of varying texture geometry characteristics, in particular texture zone circumferential/radial extent, dimple depth, and texture density on the bearing performance indices (load carrying capacity, friction torque, and friction coefficient) are studied, for a representative operating point. For the reference texture design, the effects of varying operating conditions are further investigated, by also taking into account thermal effects. In particular, adiabatic conditions and conjugate heat transfer at the bearing pad are considered. The results of the present study indicate that parallel thrust bearings textured by proper rectangular dimples are characterized by substantial load carrying capacity levels. Thermal effects may significantly reduce load capacity, especially in the range of high speeds and high loads. Based on the present results, favorable texture designs can be assessed.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1333
Author(s):  
Syed S. U. H. Bukhari ◽  
Alan G. McElligott ◽  
Rebecca S. V. Parkes

There are approximately 112 million working equids in developing countries, many of which are associated with brick kilns. Brick kilns and overloading are associated with welfare problems in working equids. Understanding equids’ abilities and influencing factors are important for both effective performance and welfare. Traditionally, measurement of the amount of ‘bone’ was used, and more recently, gait symmetry has been identified as a potential marker for loading capacity. Assessment of stride parameters and gait kinematics provides insights into adaptations to loading and may help determine cut-off loads. Physiological factors such as the ability to regain normal heart rates shortly after work is an important tool for equine fitness assessment and a more accurate measure of load-carrying capacity than absolute heart rate. Oxidative stress, plasma lactate, and serum creatine kinase activity are reliable biochemical indicators of loading ability. For monitoring stress, salivary cortisol is superior to serum cortisol level for assessment of hypothalamus-pituitary-adrenal axis and is related to eye temperatures, but this has yet to be interpreted in terms of load-carrying ability in equids. Further research is needed to standardize the evidence-based load-carrying capacity of working horses and donkeys.


BioResources ◽  
2019 ◽  
Vol 14 (4) ◽  
pp. 8640-8655
Author(s):  
Eliška Máchová ◽  
Nadežda Langová ◽  
Roman Réh ◽  
Pavol Joščák ◽  
Ľuboš Krišťák ◽  
...  

The effect of moisture content on mechanical properties of corner furniture joints was evaluated for when different joining methods and materials were used. Results included statistical processing of the measured and calculated data and evaluation of the effect of selected factors on mechanical properties of joints caused by using mechanical fasteners and glue. The load-carrying capacity and stiffness of corner joints were investigated in two environments, humid and dry, with standard conditions for temperature and pressure, i.e., dry environment had a temperature of 23 °C ± 2 °C and relative humidity of 45% ± 5%, and the humid environment had a temperature of 23 °C ± 2 °C and relative humidity of 90% ± 5%. The two types of materials used were particleboard (PB) with a thickness of 12 mm and artificial stone (plastic) with a thickness of 12 mm. Both materials were tested individually as well as their combination. Epoxy and polyurethane (PUR) adhesives were used for the glued dowel joints. When the same materials were bonded, maximum load carrying capacity was achieved with PUR adhesive, material combination of plastic-plastic, and moisture content of 90%. The epoxy adhesive was most suitable for bonding materials with different properties.


2012 ◽  
Vol 85 (3) ◽  
pp. 521-532 ◽  
Author(s):  
Jeevan Prasad Reddy ◽  
Manjusri Misra ◽  
Amar Mohanty

In this research, switchgrass (SG) fiber-reinforced poly(trimethylene terephthalate) (PTT) biocomposites were prepared by extrusion followed by injection molding machine. The methylene-diphenyl-diisocyanate-polybutadiene (MDIPB) prepolymer was used to enhance the impact strength of the biocomposites. In addition, the polymeric methylene-diphenyl-diisocyanate (PMDI) compatibilizer was used to enhance the mechanical properties of the composites. The effect of compatibilizer on mechanical, crystallization melting, thermomechanical, melt flow index (MFI), morphological, and thermal stability properties of the composites was studied. Thermomechanical properties of the biocomposites were studied by dynamic mechanical analysis (DMA). Scanning electron microscopy (SEM) was used to observe the interfacial adhesion between the fiber and matrix. The results showed that MDIPB and PMDI have a significant effect on the mechanical properties of the composites. The impact strength of MDIPB- and PMDI-compatibilized composites was increased by 87 % when compared to the uncompatibilized composite.


2011 ◽  
Vol 99-100 ◽  
pp. 715-718 ◽  
Author(s):  
Jun Dong ◽  
De Ping Chen ◽  
Ju Mei Zhao ◽  
De Shan Shan ◽  
Xin Yue Liu ◽  
...  

Twelve PVC tubed short concrete columns and four columns without PVC tube confined were tested under axial load to investigate mechanical properties of axially loaded PVC tubed short concrete columns . The principal influencing factors such as concrete strength, loading condition and ratio of height to diameter were studied. Test results indicated that strength and deformation performance of core concrete increased as a result of the confinement of PVC tube. The PVC tube confinement effect on concrete will decrease with an increase in strength of concrete. Load- carrying capacity and deformation of short composite columns with different loading condition made some difference. As the ratio of height to diameter increases, load- carrying capacity and plasticity of short composite columns decreased gradually.


Sign in / Sign up

Export Citation Format

Share Document