scholarly journals New Principles of Polymer Composite Preparation. MQ Copolymers as an Active Molecular Filler for Polydimethylsiloxane Rubbers

Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2848
Author(s):  
Ivan B. Meshkov ◽  
Aleksandra A. Kalinina ◽  
Vadim V. Gorodov ◽  
Artem V. Bakirov ◽  
Sergey V. Krasheninnikov ◽  
...  

Colorless transparent vulcanizates of silicone elastomers were prepared by mixing the components in a common solvent followed by solvent removal. We studied the correlation between the mechanical behavior of polydimethylsiloxane (PDMS)-rubber compositions prepared using MQ (mono-(M) and tetra-(Q) functional siloxane) copolymers with different ratios of M and Q parts as a molecular filler. The composition and molecular structure of the original rubber, MQ copolymers, and carboxyl-containing PDMS oligomers were also investigated. The simplicity of the preparation of the compositions, high strength and elongation at break, and their variability within a wide range allows us to consider silicone elastomers as a promising alternative to silicone materials prepared by traditional methods.

Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2135
Author(s):  
Hatem Alhazmi ◽  
Syyed Adnan Raheel Shah ◽  
Muhammad Kashif Anwar ◽  
Ali Raza ◽  
Muhammad Kaleem Ullah ◽  
...  

Polymer composites have been identified as the most innovative and selective materials known in the 21st century. Presently, polymer concrete composites (PCC) made from industrial or agricultural waste are becoming more popular as the demand for high-strength concrete for various applications is increasing. Polymer concrete composites not only provide high strength properties but also provide specific characteristics, such as high durability, decreased drying shrinkage, reduced permeability, and chemical or heat resistance. This paper provides a detailed review of the utilization of polymer composites in the construction industry based on the circular economy model. This paper provides an updated and detailed report on the effects of polymer composites in concrete as supplementary cementitious materials and a comprehensive analysis of the existing literature on their utilization and the production of polymer composites. A detailed review of a variety of polymers, their qualities, performance, and classification, and various polymer composite production methods is given to select the best polymer composite materials for specific applications. PCCs have become a promising alternative for the reuse of waste materials due to their exceptional performance. Based on the findings of the studies evaluated, it can be concluded that more research is needed to provide a foundation for a regulatory structure for the acceptance of polymer composites.


Polymers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 810 ◽  
Author(s):  
Marina Matos ◽  
Andreia F. Sousa ◽  
Nuno H. C. S. Silva ◽  
Carmen S. R. Freire ◽  
Márcia Andrade ◽  
...  

Polyesters made from 2,5-furandicarboxylic acid (FDCA) have been in the spotlight due to their renewable origins, together with the promising thermal, mechanical, and/or barrier properties. Following the same trend, (nano)composite materials based on FDCA could also generate similar interest, especially because novel materials with enhanced or refined properties could be obtained. This paper presents a case study on the use of furanoate-based polyesters and bacterial cellulose to prepare nanocomposites, namely acetylated bacterial cellulose/poly(butylene 2,5-furandicarboxylate) and acetylated bacterial cellulose/poly(butylene 2,5-furandicarboxylate)-co-(butylene diglycolate)s. The balance between flexibility, prompted by the furanoate-diglycolate polymeric matrix; and the high strength prompted by the bacterial cellulose fibres, enabled the preparation of a wide range of new nanocomposite materials. The new nanocomposites had a glass transition between −25–46 °C and a melting temperature of 61–174 °C; and they were thermally stable up to 239–324 °C. Furthermore, these materials were highly reinforced materials with an enhanced Young’s modulus (up to 1239 MPa) compared to their neat copolyester counterparts. This was associated with both the reinforcing action of the cellulose fibres and the degree of crystallinity of the nanocomposites. In terms of elongation at break, the nanocomposites prepared from copolyesters with higher amounts of diglycolate moieties displayed higher elongations due to the soft nature of these segments.


Author(s):  
James Magargee ◽  
Rong Fan ◽  
Jian Cao

The flow of electric current through a metal during deformation has been observed to reduce its flow stress and increase its ductility. This observation has motivated the development of advanced “electrically-assisted” metal forming processes that utilize electric current to assist in the forming of high-strength and difficult-to-form materials, such as titanium and magnesium alloys. This method of heating provides attractive benefits such as rapid heating times, increased energy efficiency due to its localized nature, as well as the ability to heat the workpiece in the forming machine thus eliminating the transfer process between oven heating and forming. In this paper, a generalized method is proposed to relate applied electric current density to thermally activated mechanical behavior to better understand and improve the processing of metals during electrically-assisted deformation. A comparison is made of engineering metals studied experimentally as well as in the literature, and it is shown that the method provides insight into what some researchers have observed as the occurrence or absence of a “current density threshold” in certain materials. A new material parameter, “current density sensitivity,” is introduced in order to provide a metric for the relative influence of current density on a material's thermally activated plastic flow stress. As a result, the electric current necessary to induce thermal softening in a material can be estimated in order to effectively parameterize a wide range of advanced electrically-assisted forming processes. Thermally induced changes in material microstructure are observed and discussed with respect to the underlying deformation mechanisms present during electrically-assisted deformation. Finally, a strong correlation between thermally activated mechanical behavior and elastic springback elimination during sheet bending is demonstrated.


Author(s):  
B. J. Hockey

Ceramics, such as Al2O3 and SiC have numerous current and potential uses in applications where high temperature strength, hardness, and wear resistance are required often in corrosive environments. These materials are, however, highly anisotropic and brittle, so that their mechanical behavior is often unpredictable. The further development of these materials will require a better understanding of the basic mechanisms controlling deformation, wear, and fracture.The purpose of this talk is to describe applications of TEM to the study of the deformation, wear, and fracture of Al2O3. Similar studies are currently being conducted on SiC and the techniques involved should be applicable to a wide range of hard, brittle materials.


Author(s):  
A. G. Korchunov ◽  
E. M. Medvedeva ◽  
E. M. Golubchik

The modern construction industry widely uses reinforced concrete structures, where high-strength prestressing strands are used. Key parameters determining strength and relaxation resistance are a steel microstructure and internal stresses. The aim of the work was a computer research of a stage-by-stage formation of internal stresses during production of prestressing strands of structure 1х7(1+6), 12.5 mm diameter, 1770 MPa strength grade, made of pearlitic steel, as well as study of various modes of mechanical and thermal treatment (MTT) influence on their distribution. To study the effect of every strand manufacturing operation on internal stresses of its wires, the authors developed three models: stranding and reducing a 7-wire strand; straightening of a laid strand, stranding and MTT of a 7-wire strand. It was shown that absolute values of residual stresses and their distribution in a wire used for strands of a specified structure significantly influence performance properties of strands. The use of MTT makes it possible to control in a wide range a redistribution of residual stresses in steel resulting from drawing and strand laying processes. It was established that during drawing of up to 80% degree, compressive stresses of 1100-1200 MPa degree are generated in the central layers of wire. The residual stresses on the wire surface accounted for 450-500 MPa and were tension in nature. The tension within a range of 70 kN to 82 kN combined with a temperature range of 360-380°С contributes to a two-fold decrease in residual stresses both in the central and surface layers of wire. When increasing temperature up to 400°С and maintaining the tension, it is possible to achieve maximum balance of residual stresses. Stranding stresses, whose high values entail failure of lay length and geometry of the studied strand may be fully eliminated only at tension of 82 kN and temperature of 400°С. Otherwise, stranding stresses result in opening of strands.


Alloy Digest ◽  
1995 ◽  
Vol 44 (6) ◽  

Abstract SP 700 is a high strength, beta-rich alpha-beta titanium alloy. It was developed with the following attributes: (1) excellent hot- and cold-workability; (2) enhanced hardenability with a wide range of mechanical properties that can be obtained by heat treatment; and (3) superior superplastic behavior at low temperature (around 1050 K). This datasheet provides information on composition, physical properties, microstructure, elasticity, tensile properties, and bend strength. It also includes information on high temperature performance as well as heat treating. Filing Code: TI-107. Producer or source: NKK Corporation.


Alloy Digest ◽  
1978 ◽  
Vol 27 (7) ◽  

Abstract ALMAR 300 Alloy is a vacuum-melted ultra-high-strength steel. The annealed structure of this alloy is essentially a carbon-free, iron-nickel martensite (a relatively soft Rockwell C 28) that can be strengthened by cold working and elevated-temperature (900-950 F) age hardening to useful yield strengths as high as 300,000 psi. The unique properties of this alloy make it suitable for a wide range of section sizes. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SA-349. Producer or source: Allegheny Ludlum Corporation.


Alloy Digest ◽  
1975 ◽  
Vol 24 (5) ◽  

Abstract USS TENELON is a completely austenitic, nickel-free stainless steel with exceptionally high strength which is retained at elevated temperatures. It has excellent corrosion resistance in atmospheric and mild acid exposures and maintains nonmagnetic characteristics even when 60% cold reduced. It also has good stress-rupture and creep properties in the range 1200-1500 F. It has a wide range of applications. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness, creep, and fatigue. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SS-311. Producer or source: United States Steel Corporation.


Alloy Digest ◽  
1981 ◽  
Vol 30 (7) ◽  

Abstract SAE 8642 is a triple-alloy steel that can be hardened by austenitizing and quenching in oil. This steel has moderate hardenability with relative high strength and toughness, especially in the quenched-and-tempered condition. It is used in a wide range of components, parts and tools; examples are bolts, shafts, gears, wrenches, axles and housings. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SA-382. Producer or source: Alloy steel mills and foundries.


Alloy Digest ◽  
2009 ◽  
Vol 58 (3) ◽  

Abstract Domex 550MC is a hot-rolled, high-strength low-alloy (HSLA) steel for cold forming operations. It is available in thicknesses of 2.00-12.80 mm. The alloy meets or exceeds the requirements of S550MC in EN 10149-2. Applications include a wide range of fabricated components and steel structures, including truck chassis, crane booms, and earthmoving machines. This datasheet provides information on composition, physical properties, tensile properties, and bend strength as well as fatigue. It also includes information on forming, heat treating, and joining. Filing Code: SA-594. Producer or source: SSAB Swedish Steel Inc.


Sign in / Sign up

Export Citation Format

Share Document