scholarly journals Barrier Properties and Hydrophobicity of Biodegradable Poly(lactic acid) Composites Reinforced with Recycled Chinese Spirits Distiller’s Grains

Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2861
Author(s):  
Zhi-Jun Chen ◽  
Chi-Hui Tsou ◽  
Meng-Lin Tsai ◽  
Jipeng Guo ◽  
Manuel Reyes De Guzman ◽  
...  

Adding natural biomass to poly(lactic acid) (PLA) as a reinforcing filler is a way to change the properties of PLA. This paper is about preparing PLA/biomass composites by physically melting and blending Chinese Spirits distiller’s grains (CSDG) biomass and PLA to optimize the composite performance. Composites of modified PLA (MPLA) with varying amounts of CSDG were also prepared by the melt-mixing method, and unmodified PLA/CSDG composites were used as a control group for comparative analysis. The functional groups of MPLA enhanced the compatibility between the polymer substrate and CSDG. The composite water vapor/oxygen barrier and mechanical properties were studied. It was found that the barrier and mechanical properties of MPLA/CSDG composites were significantly improved. SEM was adopted to examine the tensile section structure of the composites, and the compatibility between the filler and the matrix was analyzed. An appropriate amount of CSDG had a better dispersibility in the matrix, and it further improved the interfacial bonding force, which in turn improved the composite mechanical properties. X-ray diffraction, thermogravimetric analysis, and differential scanning calorimetry were conducted to determine the crystalline properties and to analyze the stability of the composites. It was found that the CSDG content had a significant effect on the crystallinity. Barrier and biodegradation mechanisms were also discussed.

2015 ◽  
Vol 35 (8) ◽  
pp. 753-764 ◽  
Author(s):  
Rong-yuan Chen ◽  
Wei Zou ◽  
Hai-chen Zhang ◽  
Gui-zhen Zhang ◽  
Zhi-tao Yang ◽  
...  

Abstract Poly(lactic acid) (PLA)/polypropylene (PP) blends with different weight fractions were prepared by a novel vane extruder. The mechanical properties, morphology, crystallization behavior and thermal stability of the blends were investigated. The tensile strength, flexural strength and elongation at break decreased nonlinearly when the PP content was not more than 50 wt% and then increased with an increase in the PP content. The flexural modulus decreased with increasing PP weight fraction. The PLA/PP 90:10 blend exhibited the optimum impact strength. Scanning electron microscopy measurements revealed that the PLA/PP blends were immiscible. Phase separation occurred significantly at a blend ratio of 50:50. Regarding the PLA/PP 90:10 blend, the mean diameter of the disperse-phase PP particles was the smallest at 1.11 μm. Differential scanning calorimetry measurements showed that low content of PP enhanced the crystallization of PLA. The PLA component in the blends impeded the crystallization of PP when PP was used as the matrix. The thermogravimetric analysis measurement involved a two-step decomposition process of the blends. The thermal resistance of the blends was improved by compounding with PP. As compatibilizers, both the maleic anhydride-grafted PP and the ethylene/n-butyl acrylate/glycidyl methacrylate terpolymer helped improve the mechanical properties, crystallization property and thermal resistance of the PLA/PP blends.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 892 ◽  
Author(s):  
Rossella Arrigo ◽  
Mattia Bartoli ◽  
Giulio Malucelli

Biocomposites based on poly(lactic acid) (PLA) and biochar (BC) particles derived from spent ground coffee were prepared using two different processing routes, namely melt mixing and solvent casting. The formulated biocomposites were characterized through rheological, thermal, and mechanical analyses, aiming at evaluating the effects of the filler content and of the processing method on their final properties. The rheological characterization demonstrated the effectiveness of both exploited strategies in achieving a good level of filler dispersion within the matrix, notwithstanding the occurrence of a remarkable decrease of the PLA molar mass during the processing at high temperature. Nevertheless, significant alterations of the PLA rheological behavior were observed in the composites obtained by melt mixing. Differential scanning calorimetry (DSC) measurements indicated a remarkable influence of the processing method on the thermal behavior of biocomposites. More specifically, melt mixing caused the appearance of two melting peaks, though the structure of the materials remained almost amorphous; conversely, a significant increase of the crystalline phase content was observed for solvent cast biocomposites containing low amounts of filler that acted as nucleating agents. Finally, thermogravimetric analyses suggested a catalytic effect of BC particles on the degradation of PLA; its biocomposites showed decreased thermal stability as compared with the neat PLA matrix.


2016 ◽  
Vol 36 (2) ◽  
pp. 181-188 ◽  
Author(s):  
Aleksandra Buzarovska ◽  
Gordana Bogoeva-Gaceva ◽  
Radek Fajgar

Abstract Poly(lactic acid) (PLA) based composite films with different content of talc (5–15 wt%) were prepared by the solvent casting method. The effect of talc on morphological, structural, thermal, barrier and mechanical properties of neat PLA was investigated. The PLA/talc composites revealed a polymorphic crystalline structure, as demonstrated by X-ray diffraction (XRD) study and differential scanning calorimetry (DSC) analysis. The PLA/talc composites also exhibited significantly improved barrier properties (up to 55% compared to neat PLA), as shown by water vapor permeability (WVP) tests. The puncture measurements showed improved mechanical properties at lower content of talc (up to 5 wt%), and increased brittleness of the PLA/talc composite films at higher talc concentrations.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2621 ◽  
Author(s):  
Hai Chi ◽  
Wenhui Li ◽  
Chunli Fan ◽  
Cheng Zhang ◽  
Lin Li ◽  
...  

The microstructure, thermal properties, mechanical properties and oxygen and water vapor barrier properties of a poly(lactic acid) (PLA)/nano-TiO2 composite film before and after high pressure treatment were studied. Structural analysis showed that the functional group structure of the high pressure treated composite film did not change. It was found that the high pressure treatment did not form new chemical bonds between the nanoparticles and the PLA. The micro-section of the composite film after high pressure treatment became very rough, and the structure was depressed. Through the analysis of thermal and mechanical properties, high pressure treatment can not only increase the strength and stiffness of the composite film, but also increase the crystallinity of the composite film. Through the analysis of barrier properties, it is found that the barrier properties of composite films after high pressure treatment were been improved by the applied high pressure treatment.


2019 ◽  
Vol 33 (10) ◽  
pp. 1383-1395
Author(s):  
Hongjuan Zheng ◽  
Zhengqian Sun ◽  
Hongjuan Zhang

Poly(lactic acid) (PLA) has good environmental compatibility, however, its high brittleness, slow rate of crystallization, and low heat distortion temperature restrict its widespread use. To overcome these limitations, in this study, PLA was mixed with walnut shell (WS) powders. The effects of WS powders on the morphology and the thermal and mechanical properties of PLA were investigated. The products were characterized by differential scanning calorimetry (DSC), infrared (IR) spectroscopy, polarizing optical microscopy (POM), and various mechanical property testing techniques. The results showed that WS powders had a significant effect on the morphology and the thermal and mechanical properties of PLA. The tensile strength, impact strength, and elongation at break of the PLA/WS composites first increased and then decreased with the increasing addition of WS powders. When the addition of WS powders was about 0.5 wt%, they reached maximum values of 51.2 MPa, 23.3 MPa, and 19.0%, respectively. Compared with neat PLA, the spherulite grain size of the composites could be reduced and many irregular polygons were formed during crystallization. The melting, cold crystallization, and glass-transition temperatures of the composites were lower than those of neat PLA.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2346 ◽  
Author(s):  
Stanislav Kotsilkov ◽  
Evgeni Ivanov ◽  
Nikolay Vitanov

Nanoparticles of graphene and carbon nanotubes are attractive materials for the improvement of mechanical and barrier properties and for the functionality of biodegradable polymers for packaging applications. However, the increase of the manufacture and consumption increases the probability of exposure of humans and the environment to such nanomaterials; this brings up questions about the risks of nanomaterials, since they can be toxic. For a risk assessment, it is crucial to know whether airborne nanoparticles of graphene and carbon nanotubes can be released from nanocomposites into the environment at their end-life, or whether they remain embedded in the matrix. In this work, the release of graphene and carbon nanotubes from the poly(lactic) acid nanocomposite films were studied for the scenarios of: (i) biodegradation of the matrix polymer at the disposal of wastes; and (ii) combustion and fire of nanocomposite wastes. Thermogravimetric analysis in air atmosphere, transmission electron microscopy (TEM), atomic force microscopy (AFM) and scanning electron microscope (SEM) were used to verify the release of nanoparticles from nanocomposite films. The three factors model was applied for the quantitative and qualitative risk assessment of the release of graphene and carbon nanotubes from nanocomposite wastes for these scenarios. Safety concern is discussed in respect to the existing regulations for nanowaste stream.


Nanomaterials ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 22 ◽  
Author(s):  
Agueda Sonseca ◽  
Salim Madani ◽  
Gema Rodríguez ◽  
Víctor Hevilla ◽  
Coro Echeverría ◽  
...  

Poly(lactic acid) (PLA) is one of the most commonly employed synthetic biopolymers for facing plastic waste problems. Despite its numerous strengths, its inherent brittleness, low toughness, and thermal stability, as well as a relatively slow crystallization rate represent some limiting properties when packaging is its final intended application. In the present work, silver nanoparticles obtained from a facile and green synthesis method, mediated with chitosan as a reducing and stabilizing agent, have been introduced in the oligomeric lactic acid (OLA) plasticized PLA in order to obtain nanocomposites with enhanced properties to find potential application as antibacterial food packaging materials. In this way, the green character of the matrix and plasticizer was preserved by using an eco-friendly synthesis protocol of the nanofiller. The X-ray diffraction (XRD) and differential scanning calorimetry (DSC) results proved the modification of the crystalline structure as well as the crystallinity of the pristine matrix when chitosan mediated silver nanoparticles (AgCH-NPs) were present. The final effect over the thermal stability, mechanical properties, degradation under composting conditions, and antimicrobial behavior when AgCH-NPs were added to the neat plasticized PLA matrix was also investigated. The obtained results revealed interesting properties of the final nanocomposites to be applied as materials for the targeted application.


2016 ◽  
Vol 709 ◽  
pp. 27-31
Author(s):  
Thanh Chi Nguyen ◽  
Ruksakulpiwat Chaiwat ◽  
Yupaporn Ruksakulpiwat

Glycidyl methacrylate (GMA) was grafted onto poly (lactic acid) (PLA) by internal mixer using dicumyl peroxide (DCP) as an initiator. The results from proton nuclear magnetic resonance (1H-NMR) and gel permeation chromatograph (GPC) indicated that the grafting reaction of GMA onto PLA took place successfully. In order to obtain the optimal GMA content used to graft onto PLA chain, the GMA content was varied into 5, 10 and 15 wt% of PLA. GMA content of 10 wt% was found to give the highest elongation at break of glycidyl methacrylate grafted poly (lactic acid) (PLA-g-GMA). The weight-average molecular weights, the number-average molecular weights and polydispersity index of PLA increased after grafting with GMA. After grafting, the brittle fracture behaviour of PLA was changed to ductile fracture behaviour of PLA-g-GMA. With its superior mechanical properties compared to those of pure PLA, PLA-g-GMA can be considered to be used as a new generation of biodegradable polymer, which can be applied in many industrial applications.


2021 ◽  
pp. 009524432098816
Author(s):  
Sajjad Daneshpayeh ◽  
Faramarz Ashenai Ghasemi ◽  
Ismail Ghasemi

In this research, mechanical properties of poly lactic acid (PLA)-based nanocomposites were investigated. The nanocomposites were fabricated by adding of three types of nano-materials including multi-walled carbon nanotubes (MWCNT), carbon black (CB) nanoparticles and graphene nano-platelets (GnPs) in four levels from 0 to 3 wt.% to PLA matrix by an internal mixer. Tensile and impact tests were performed to obtain the mechanical properties of nanocomposites. Moreover, field-emission scanning electron microscopy (FESEM) was used to observe the state of nano-fillers dispersion. The FESEM images showed that CB nanoparticles and MWCNT are well distributed in the matrix, but that GnPs are agglomerated. The results of the tensile tests showed that the addition of MWCNT and CB nanoparticles increased the tensile strength by 36% and 76% and the elastic modulus by 10% and 68%, respectively. Also, the presence of all three types of carbon fillers at low loading increased the elongation at break of PLA matrix, and this increase was more significant for GnPs by 55% in the 1 wt.% loading. Finally, the PLA polymer become more brittle with the addition of nanotubes and nano-platelets, and its impact strength was reduced. While, the CB nanoparticles increased the absorbing energy and impact strength.


2018 ◽  
Vol 916 ◽  
pp. 19-23 ◽  
Author(s):  
Sirirat Wacharawichanant ◽  
Nisarat Wimonsupakit ◽  
Sasithorn Kuhaudomlap

The objective of this study is to fabricate the polyoxymethylene (POM)/microcrystalline cellulose (MCC) and poly(lactic acid) (PLA)/MCC composites, and to compare the effect of MCC on the morphology and mechanical properties of POM and PLA. The polymer composites were prepared by melt mixing in an internal mixer and molded by compression molding. The MCC concentrations were 1, 3, 5, 7, 10, 15 and 10% by weight. From scanning electron microscopy study observes the fracture surface of POM and PLA composites is much rough and the roughness increases with increasing MCC content. This observation indicates MCC induces the ductile fracture characteristic of POM and PLA. The addition of MCC can improve the impact strength of PLA composite and improve Young’s modulus of both POM and PLA composites. While the tensile strength and strain at break decrease after adding MCC. In summary, MCC can enhance the morphology and mechanical properties of PLA composites is better than POM composites.


Sign in / Sign up

Export Citation Format

Share Document