scholarly journals Void Content Minimization in Vacuum Infusion (VI) via Effective Degassing

Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2876
Author(s):  
Jaime Juan ◽  
Arlindo Silva ◽  
Jose Antonio Tornero ◽  
Jose Gámez ◽  
Nuria Salán

This paper addresses the major concern which component porosity represents in Vacuum Infusion (VI) manufacturing due to resin gelation at pressures close to absolute vacuum. Degassing is a fundamental step to minimize or even avoid resin outgassing and enhance dissolution of voids created during preform impregnation. The efficacy of different degassing procedures based on vacuum degassing, and assisted by adding a nucleation medium, High Speed (HS) resin stirring and/or later pressurization during different time intervals have been analyzed in terms of final void content is studied. Through a rigorous and careful design of the manufacturing process, outgassing effects on final void content were isolated from the rest of porosity causes and specimens with two clearly identifiable regions in terms of porosity were manufactured to facilitate its analysis. Maximum void content was kept under 4% and porous area size was reduced by 72% with respect to conventional vacuum degassing when resin was stirred at HS; therefore, highlighting the importance of enhancing bubble formation during degassing.

2013 ◽  
Vol 315 ◽  
pp. 63-67 ◽  
Author(s):  
Muhammad Fahad ◽  
Neil Hopkinson

Rapid prototyping refers to building three dimensional parts in a tool-less, layer by layer manner using the CAD geometry of the part. Additive Manufacturing (AM) is the name given to the application of rapid prototyping technologies to produce functional, end use items. Since AM is relatively new area of manufacturing processes, various processes are being developed and analyzed for their performance (mainly speed and accuracy). This paper deals with the design of a new benchmark part to analyze the flatness of parts produced on High Speed Sintering (HSS) which is a novel Additive Manufacturing process and is currently being developed at Loughborough University. The designed benchmark part comprised of various features such as cubes, holes, cylinders, spheres and cones on a flat base and the build material used for these parts was nylon 12 powder. Flatness and curvature of the base of these parts were measured using a coordinate measuring machine (CMM) and the results are discussed in relation to the operating parameters of the process.The result show changes in the flatness of part with the depth of part in the bed which is attributed to the thermal gradient within the build envelope during build.


Author(s):  
Xiongliang Yao ◽  
Xianghong Huang ◽  
Zeyu Shi ◽  
Wei Xiao ◽  
Kainan Huang

When a research ship sails at a high speed, there is relative motion between the ship and fluid. The ship is slammed by the fluid. To reduce the direct impact of the fluid, sonar is installed in the moonpool, and acoustic detection equipment is installed along the research ship bottom behind the moonpool. However, during high-speed sailing, a large number of bubbles form in the moonpool. Some bubbles escape from the moonpool and flow backward along the bottom of the ship. When a large number of bubbles are around the sonar and acoustic detection equipment, the equipment malfunctions. However, there have been few studies on bubble formation in the moonpool with sonar and distribution along the ship bottom behind the moonpool. Therefore, a related model was developed and prototype tests were carried out in this study. The appropriate similarity criteria were selected and verified to ensure the reliability of the experiment. Considering the influences of speed, sonar, moonpool shape, and draft, the reason and mechanism of bubble formation in a sonar moonpool were studied. An artificial ventilation method was used to simulate a real navigation environment. Because the bubbles are in a bright state under laser irradiation, the bubbles can be used as tracer particles. A high-speed camera captured illuminated bubbles. The distribution mechanism of bubbles along the ship bottom behind the moonpool was investigated using particle image velocimetry under the influence of the moonpool shape and sailing speed. The model experimental results agreed well with those of the prototype test. The air sucked into the water was the dominant factor in bubble formation in the moonpool. The bubbles were distributed in a W shape under the ship bottom.


Author(s):  
Christopher Eckersley ◽  
Joost Op 't Eynde ◽  
Mitchell Abrams ◽  
Cameron R. Bass

Abstract Cavitation has been shown to have implications for head injury, but currently there is no solution for detecting the formation of cavitation through the skull during blunt impact. The goal of this communication is to confirm the wideband acoustic wavelet signature of cavitation collapse, and determine that this signature can be differentiated from the noise of a blunt impact. A controlled, laser induced cavitation study was conducted in an isolated water tank to confirm the wide band acoustic signature of cavitation collapse in the absence of a blunt impact. A clear acrylic surrogate head was impacted to induce blunt impact cavitation. The bubble formation was imaged using a high speed camera, and the collapse was synched up with the wavelet transform of the acoustic emission. Wideband acoustic response is seen in wavelet transform of positive laser induced cavitation tests, but absent in laser induced negative controls. Clear acrylic surrogate tests showed the wideband acoustic wavelet signature of collapse can be differentiated from acoustic noise generated by a blunt impact. Broadband acoustic signal can be used as a biomarker to detect the incidence of cavitation through the skull as it consists of frequencies that are low enough to potentially pass through the skull but high enough to differentiate from blunt impact noise. This lays the foundation for a vital tool to conduct CSF cavitation research in-vivo.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1797
Author(s):  
Nguyen Thi Linh Tuyen ◽  
Le Quan Nghiem ◽  
Nguyen Duc Tuan ◽  
Phuoc Huu Le

The development of new drugs that combine active ingredients for the treatment hypertension is critically essential owing to its offering advantages for both patients and manufacturers. In this study, for the first time, detailed development of a scalable process of film-coated bi-layer tablets containing sustained-release metoprolol succinate and immediate-release amlodipine besylate in a batch size of 10,000 tablets is reported. The processing parameters of the manufacturing process during dry mixing-, drying-, dry mixing- completion stages were systematically investigated, and the evaluation of the film-coated bi-layer tablet properties was well established. The optimal preparation conditions for metoprolol succinate layer were 6 min- dry mixing with a high-speed mixer (120 rpm and 1400 rpm), 30-min drying with a fluid bed dryer, and 5-min- mixing completion at 25 rpm. For the preparation of amlodipine besylate layer, the optimal dry-mixing time using a cube mixer (25 rpm) was found to be 5 min. The average weight of metoprolol succinate layers and bi-layer tablets were controlled at 240–260 mg and 384–416 mg, respectively. Shewhart R chart and X¯ charts of all three sampling lots were satisfactory, confirming that the present scalable process was stable and successful. This study confirms that the manufacturing process is reproducible, robust; and it yields a consistent product that meets specifications.


2021 ◽  
Author(s):  
Haochen Han ◽  
Yong Zhang ◽  
Jia Chen ◽  
Qi Sun ◽  
Zhimeng Fang ◽  
...  

Abstract High-speed wired drill pipe and its corresponding communication technology not only can achieve high-speed transmission rate and high-capacity, but also can realize real-time monitoring and dual-way communication in whole section, which can prevent downhole problems effectively. As a series system, the homogeneity and robustness of these wired drill pipes are crucial. This paper focuses on how to overcome the difficulty in manufacturing process of information drill pipe and complete the validation test. In order to guarantee the quality of information drill pipe and satisfy the technological requirements of mass production, we optimize the manufacturing process and put forward reasonable test techniques. The optimizations of manufacturing process include the analysis on constant tension of pressure pipe, quantitative cutting pipe and perforation in pipe nozzle. The testing techniques includes magnetic coupling coil impedance test, high pressure test, communication performance test of both single pipe and series system. The test result can be judged and evaluated by the attenuation value of the signal attenuation test and the signal reflection waveform as well as sealing reliability. With the help of the optimization of the manufacturing process and the application of new tooling, the quality and robustness of information drill pipe is improved obviously. Pass rate in primary assembly is increased from 70% to 92%. After the second assembly, pass rate can be increased to 99.5%. Besides, the work efficiency is greatly improved and the process requirements of mass production are satisfied. The validation test can screen out the drill pipe with poor quality and performance effectively thus to improve the reliability of the whole system. By means of the improvement of manufacturing and the validation test, the comprehensive pass rate of information drill pipes is increased from 84% to 95%. During three field tests in Jilin and Daqing Oilfield, the information drill pipes functioned well and accomplished all the test tasks successfully. High-speed wired drill pipe can improve the downhole data transmission on a large margin. The theorical transmission rate can be up to 100 kbps, 10,000 times as much as the traditional mud impulse telemetry. The manufacturing optimization and test technology can guarantee the performance and realize downhole data highway.


2020 ◽  
Vol 54 (20) ◽  
pp. 2707-2721 ◽  
Author(s):  
David Hoskins ◽  
Genevieve Palardy

Ultrasonic welding is a common fusion bonding technique to join unreinforced and reinforced thermoplastics. It is expected that applying ultrasonic vibrations to thermoset prepregs can produce heat generation to promote resin flow and consolidation. This paper discusses the feasibility of using ultrasonic vibrations as a high-speed repair technique for carbon fiber/epoxy prepregs to replace the traditional vacuum-bagging scarf setup. Three material types were investigated: out-of-autoclave unidirectional and plain weave prepregs (Cycom® 5320) and a general purpose twill weave prepreg (AS4/Newport 301). Two welding modes were considered: time and travel (vibrations stop once the desired vertical displacement is reached). For each mode, vibration time, travel, force, and amplitude were investigated. Cross-sectional analysis showed that void content equal to or below the vacuum-bagged samples could be achieved with ultrasonic consolidation to meet aerospace standards (≤2%). The following ultrasonic parameters were recommended to preserve prepreg tows integrity and minimize void content: vibration time below 1.0 s, travel between 12.5% and 50% of sample's initial thickness, force equal to or below 100 N, and amplitude below 41.3 μm. Temperature values recorded during the ultrasonic process reached the manufacturer's cure temperature range (120℃ to 180℃), with a predicted maximum degree of cure of 0.24. Interlaminar shear strength values were comparable for ultrasonically consolidated and vacuum-bagged samples. Soft and hard repair patches were applied to open-hole tensile coupons, with up to 50% strength recovery for both repair methods. Overall, ultrasonic consolidation has potential as a time- and cost-efficient repair method for thermoset prepregs.


Author(s):  
Randy Samaroo ◽  
Masahiro Kawaji

Air bubble injection experiments have been performed to obtain a better understanding and detailed data on bubble behavior and liquid velocity profiles to be used for validation of 3-D Interface Tracking Models and CFD models. Two test sections used were vertical rectangular minichannels with a width and gap of 20 mm × 5.1 mm and 20 mm × 1.9 mm, respectively. Subcooled water at near atmospheric pressure flowed upward under laminar and turbulent flow conditions accompanied by air bubbles injected from a small hole on one of the vertical walls. The experiments yielded data on bubble formation and departure, and interactions with laminar or turbulent water flow. Instantaneous and ensemble-average liquid velocity profiles have been obtained using a Particle Image Velocimetry technique and a high speed video camera.


Sign in / Sign up

Export Citation Format

Share Document