scholarly journals Cationic Lignin Polymers as Flocculant for Municipal Wastewater

Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3871
Author(s):  
Courtney Moore ◽  
Weijue Gao ◽  
Pedram Fatehi

The radical polymerization of acid-washed and unwashed softwood kraft lignin with [2-(methacryloyloxy) ethyl] trimethylammonium chloride (METAC) was attempted to investigate the production of lignin-based flocculants for simulated wastewater. The incorporation of METAC onto lignin resulted in a cationic charge density (2.3–3.3 meq/g), increased water solubility (89–96% in neutral pH), and increased molecular weight (70,000–210,000 g/mol) of lignin. The lignin–METAC polymers generated from acid-washed lignin had higher molecular weights than those generated from unwashed lignin. The lignin–METAC polymers showed lower resistance to thermal decomposition than unmodified lignin due to the inclusion of PolyMETAC. The unmodified acid-washed lignin samples did not significantly affect the COD of the wastewater, while the unmodified unwashed lignin samples contributed to the COD, implying that unmodified lignin was not suitable for wastewater treatment. The flocculation of wastewater with lignin–METAC led to the chemical oxygen demand (COD) reduction of 17–23% and total organic carbon (TOC) drop of 51–60%. The lignin–METAC polymer with the highest molecular weight (produced from acid-washed lignin) reached the highest COD removal, while lignin–METAC polymer with the highest charge density (produced from unwashed lignin) reached the highest TOC removal. Focused beam reflectance measurement (FBRM) studies revealed that the lignin–METAC polymer produced from acid-washed lignin with a high molecular weight generated larger and more flocs in wastewater than the lignin–METAC polymer produced from unwashed lignin. The comparison of theoretical and experimental dosages required for neutralizing the charges of wastewater demonstrated that charge neutralization was the main flocculation mechanism, although a bridging mechanism was also involved for component removals from wastewater. The use of 1 mg/L of alum along with 65 mg/L lignin–METAC in a dual coagulation–flocculation system led to higher average phosphorous (42%) and COD (44%) removals than the singular flocculation system only using 65 mg/L of lignin–METAC (with phosphorous removals of 3.4% and COD removals of 18.7%). However, lignin–METAC flocculant slightly increased the ammonia–nitrogen content in both singular flocculation and dual coagulation–flocculation systems due to the residual ammonia content of lignin–METAC. The coagulation–flocculation system determined that the use of lignin–METAC (65 mg/L) could reduce the alum dosage significantly while maintaining a similar organic content reduction of 44% for wastewater.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Wei Kang ◽  
Xiyu Cui ◽  
Yanrui Cui ◽  
Linlin Bao ◽  
Kaili Ma

Abstract The discharge of wastewater containing both high salinity and high organic content without prior treatment is detrimental to aquatic life and water hygiene. In order to integrate the advantages of membrane treatment and biological treatment, and exert the phosphorus removal efficiency of dewatered alum sludge, in this study, an aerobic membrane reactor based on dehydrated alum sludge was used to treat mustard tuber wastewater with salinity of 6.8-7.3 % under the conditions of 30 °C, 20 kPa trans-membrane pressure (TMP) and chemical oxygen demand (COD) of 3300-3900 mg/L. Three replicate reactors were applied to assess the operational performance under different organic loading rate (OLR). The results showed that all reactors were effective in removing COD, ammonia nitrogen (NH4 +-N) and soluble phosphate (SP) under the conditions of 30 °C and 20 kPa of TMP. Meanwhile, the effluent concentration of COD, NH4 +-N and SP all increased while OLR was changed from 1.0 to 3.0 kg COD/m3/day, and the effluent COD and NH4 +-N concentration except for SP could reach the B-level of Chinese “Wastewater quality standards for discharge to municipal sewers” when OLR was less than 3.0 kg COD/m3/day. This indicates that dewatered alum sludge-based aerobic membrane reactor is a promising bio-measure for treating high salinity wastewater.


2021 ◽  
Vol 8 (12) ◽  
Author(s):  
Zhen-dong Zhao ◽  
Qiang Lin ◽  
Yang Zhou ◽  
Yu-hong Feng ◽  
Qi-mei Huang ◽  
...  

The development of efficient and low-cost wastewater treatment processes remains an important challenge. A microaerobic up-flow oxidation ditch (UOD) with micro-electrolysis by waterfall aeration was designed for treating real municipal wastewater. The effects of influential factors such as up-flow rate, waterfall height, reflux ratio, number of stages and iron dosing on pollutant removal were fully investigated, and the optimum conditions were obtained. The elimination efficiencies of chemical oxygen demand (COD), ammonia nitrogen (NH 4 + -N), total nitrogen (TN) and total phosphorus (TP) reached up to 84.33 ± 2.48%, 99.91 ± 0.09%, 93.63 ± 0.60% and 89.27 ± 1.40%, respectively, while the effluent concentrations of COD, NH 4 + -N, TN and TP were 20.67 ± 2.85, 0.02 ± 0.02, 1.39 ± 0.09 and 0.27 ± 0.02 mg l −1 , respectively. Phosphorous removal was achieved by iron–carbon micro-electrolysis to form an insoluble ferric phosphate precipitate. The microbial community structure indicated that carbon and nitrogen were removed via multiple mechanisms, possibly including nitrification, partial nitrification, denitrification and anammox in the UOD.


2011 ◽  
Vol 233-235 ◽  
pp. 1597-1602
Author(s):  
Jin Wang ◽  
Li Jun Wang ◽  
He Xiao ◽  
Jin Shan Chen

PDADMAC fixing agents with different characteristics were used to control dissolved and colloidal substances in P-RC APMP fiber suspension. Results showed that PDADMAC with higher charge density was easier to interact with anionic trash, resulting in better removal of suspended solid materials and chemical oxygen demand(COD). The PDADMAC achieved 78% removal of chemical oxygen demand. PDADMAC with higher molecular weight could easily be adsorbed onto fibers and fines, and had good removal for anionic trash. It was also found that PDADMAC with higher molecular weight was better to remove suspended solid substances, while PDADMAC with lower molecular weight was more effective for removing chemical oxygen demand(COD).


2020 ◽  
Vol 27 (1) ◽  
pp. 129-137
Author(s):  
Şevket Tulun

AbstractThe composition of local solid waste consists mainly of biodegradable waste with high moisture and organic content. After being landfilled, the waste decomposes through a series of combined physico-chemical and biological processes, resulting in the generation of landfill leachate. Unless treated properly, the leachate poses a serious threat to the environment and to public health. In this study, the use of an engineered system consisting of an up-flow anaerobic sludge blanket reactor and a vertical flow subsurface constructed wetland for the treatment of landfill leachate was investigated. The leachate obtained from a landfill facility in Aksaray, Turkey was fed into both systems and laboratory tests showed that, over the 6-week study period, the systems were able to efficiently remove chemical oxygen demand (88.6 %) and total nitrogen (80.7 %). The results of this study suggested that Typha angustifolia significantly increased the removal of total nitrogen. The higher ammonia removal occurred in the anaerobic system and also the removal efficiency increased in planted bed, it is presumed to be the result of the ammonia nitrogen uptake by the roots of the plant.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zarimah Mohd Hanafiah ◽  
Wan Hanna Melini Wan Mohtar ◽  
Hassimi Abu Hasan ◽  
Henriette Stokbro Jensen ◽  
Anita Klaus ◽  
...  

Abstract The fluctuation of domestic wastewater characteristic inhibits the current conventional microbial-based treatment. The bioremediation fungi has received attention and reported to be an effective alternative to treat industrial wastewater. Similar efficient performance is envisaged for domestic wastewater whereby assessed performance of fungi for varying carbon-to-nitrogen ratios in domestic wastewater is crucial. Thus, the performance of pre-grown wild-Serbian Ganoderma lucidum mycelial pellets (GLMPs) was evaluated on four different synthetic domestic wastewaters under different conditions of initial pH (pH 4, 5, and 7) and chemical oxygen demand (COD) to nitrogen (COD/N) ratio of 3.6:1, 7.1:1, 14.2:1, and 17.8:1 (C3.6N1, C7.1N1, C14.2N1, and C17.8N1). The COD/N ratios with a constant concentration of ammonia–nitrogen (NH3–N) were chosen on the basis of the urban domestic wastewater characteristics sampled at the inlet basin of a sewage treatment plant (STP). The parameters of pH, COD, and NH3–N were measured periodically during the experiment. The wild-Serbian GLMPs efficiently removed the pollutants from the synthetic sewage. The COD/N ratio of C17.8N1 wastewater had the best COD and NH3–N removal, as compared to the lower COD/N ratio, and the shortest treatment time was obtained in an acidic environment at pH 4. The highest percentage for COD and NH3–N removal achieved was 96.0% and 93.2%, respectively. The results proved that the mycelium of GLMP has high potential in treating domestic wastewater, particularly at high organic content as a naturally sustainable bioremediation system.


2010 ◽  
Vol 156-157 ◽  
pp. 1247-1250
Author(s):  
Yan Feng ◽  
Yan Zhen Yu ◽  
Jian Wei Zhang ◽  
Tan Juan

Novel filter media-water quenched slag particles (WQSP) were prepared using waste material- Water quenched slag, clay and pore-forming material with a mass ratio of 3:2:1. Compared with haydite, WQSP had higher total porosity, larger total surface area and lower bulk and apparent density. Tests of heavy metal elements in lixivium proved that SGSP were safe for wastewater treatment. In order to ascertain the application of WQSP ,WQSP and haydite were applied as the media of biological aerated filters (BAF) to treat municipal wastewater in two lab scale upflow BAFs. The results showed that WQSP reactor brought a relative superiority to haydite reactor in terms of chemical oxygen demand (CODcr) and ammonia nitrogen (NH3-N) removal at the conditions of water temperature ranging from 200C to 260C and DO ≥4.00 mg·L-1. Therefore, WQSP application, as a novel process of treating wastes with wastes, provided a promising way in water quenched slag utilization.


2017 ◽  
Vol 76 (9) ◽  
pp. 2544-2553 ◽  
Author(s):  
Beata Karolinczak ◽  
Wojciech Dąbrowski

Abstract Septage is wastewater stored temporarily in cesspools. A periodic supply of its significant quantities to small municipal wastewater treatment plants (WWTPs) may cause many operational problems. In the frame of the research, it has been proposed to utilize vertical flow constructed wetlands for pre-treatment of septage prior to its input to the biological stage of a WWTP. The aim of the work was to assess the effectiveness of pre-treatment in relation to factors such as: seasonality, hydraulic load, pollutants load of the VF bed and interactions between these factors. The results proved that application of a VF bed to septage pre-treatment can significantly reduce the concentration of pollutants (biochemical oxygen demand (BOD5): 82%, chemical oxygen demand (COD): 82%, total suspended solids (TSS): 91%, total nitrogen (TN): 47%, ammonia nitrogen (NH4-N): 70%), and thus decrease the loading of the biological stage of a WWTP. The mathematical models of mass removal process were created. They indicate that in case of all analysed parameters, removed load goes up with the increase of load in the influent. However, with the increase of hydraulic load, a decrease of the removed BOD5, COD, TSS and total phosphorus, and in vegetation period an increase of TN, can be observed in terms of load. There are no statistically significant effects of seasonality.


2012 ◽  
Vol 610-613 ◽  
pp. 1774-1777
Author(s):  
Hai Bo Li ◽  
Ying Hua Li ◽  
Xin Wang ◽  
Tie Heng Sun

From October 2009 to September 2010, this study focused on investigation the performance of a subsurface wastewater infiltration (SWI) system in treating domestic sewage, and evaluated the potential of the surface water pollution by using the SWI system. The results showed the removal efficiencies were relatively high: for biochemical oxygen demand (BOD), chemical oxygen demand (COD), suspended solids (SS), ammonia nitrogen (NH3-N) and total phosphorus (TP) were 95.0, 89.1, 98.1 87.6 and 98.4%, respectively. Meanwhile, the monitoring of a nearby stream characteristic indicated the SWI system could not decrease the receiving surface water quality.


2021 ◽  
Vol 269 ◽  
pp. 02002
Author(s):  
Ruohan Tang ◽  
Xiang Chen ◽  
Yuling Ou ◽  
Yeqin Xu ◽  
Zhi Chen

In this study, an integrated ecological system was constructed to treat small scattered aquaculture wastewater in southern rural areas of China. The water outlet of 4 level wetlands was continuously monitored from July to December in 2017. Results showed the average concentrations of total nitrogen (TN), ammonia nitrogen (NH4+-N), nitrate nitrogen (NO3-N), total phosphorus (TP) and chemical oxygen demand (COD) were 43.64mg/L, 17.53mg/L, 1.71mg/L, 1.66mg/L and 51.39mg/L in the average effluent concentration of grade I wetland, respectively, and 8.35mg/L, 4.42mg/L, 0.24mg/L, 0.26mg/L, 21.32mg/L in the average effluent concentration of grade IV wetland, respectively. The removal rates were 81%, 75%, 86%, 85% and 59% for TN, NH4+-N, NO3-N, TP and COD in the integrated ecological system, respectively. The effluents from the integrated ecological system met the requirements of “Discharge Standard of Pollutants for Livestock and Poultry Breeding” (GB 18596-2001) and achieved “Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant” (GB 18918-2002) the center two levels to discharge the standard. Obviously, the integrated ecological system could work efficiently in treating the rural scattered aquaculture wastewater, and also possess merits of low construction and operation costs and simple management method, which will be benefited to its application in the southern rural regions of China.


2016 ◽  
Vol 18 (2) ◽  
pp. 360-370

<div> <p>The main objective of this study was to investigate the differences between the main pollutants in young and intermediate age landfill leachate in terms of molecular weight distribution (MWD). Parameters of chemical oxygen demand (COD), five day - biochemical oxygen demand (BOD<sub>5</sub>), ultraviolet-visible spectrophotometry (UV-VIS spectrum), total kjehldahl nitrogen (TKN), ammonia nitrogen (NH<sub>4</sub>-N) and colour were fractioned by membranes with the nominal pore size of 1&micro;m, 0.05 &micro;m, 100 kDa, 50 kDa, 10 kDa, 1 kDa and 0.5 kDa. According to the MWD results appropriate treatment technology could be choosen easily. According to the MWD results the ratio of soluble fractions (&lt; 0.5 kDa) to total COD was 34% in young leachate (YL), whereas low molecular weight (MW) fractions were dominant in intermediate leachate (IL) having this ratio of 71%. Presence of lower MW compounds in IL was also confirmed with UV-VIS absorbance spectra and its spectrum was higher than the YL. According to the specific ultraviolet absorption (SUVA) values, the organic contents of all of these processes were hydrophilic. TKN and NH<sub>4</sub>-N analysis showed that in IL all the nitrogen present is in ammoniacal form, instead in YL there is still the presence of organic nitrogen. Furthermore more than half of the TKN was less than 0.5 kDa while 6 % and 16 % TKN found in wastewater from IL and YL was higher than 1 &micro;m respectively. The observations of this study may provide useful criteria to choose a suitable landfill leachate treatment processes.</p> </div> <p>&nbsp;</p>


Sign in / Sign up

Export Citation Format

Share Document