scholarly journals Polyurethane Foam Composites Reinforced with Renewable Fillers for Cryogenic Insulation

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4089
Author(s):  
Beatrise Sture ◽  
Laima Vevere ◽  
Mikelis Kirpluks ◽  
Daniela Godina ◽  
Anda Fridrihsone ◽  
...  

Sawdust, microcellulose and nanocellulose and their silanized forms were used to reinforce rigid polyurethane (PU) foam composites. The concentration of fillers was varied in the range of 0.5–1.5%. For rigid PU foam formulations, three polyols from recycled and renewable materials were used, among other components. Polyols were obtained from rapeseed oil, tall oil fatty acids and recycled polyethylene terephthalate. As rigid PU foam composites in literature have been described as appropriate thermal insulation material, the appliance of obtained composites for cryogenic insulation was investigated by determining the various physical-mechanical properties of composites. The physical-mechanical properties, such as the modulus of elasticity, compressive and tensile strength in both 293 K and 77 K, adhesion measurements with and without cryo-shock, apparent density, thermal conductivity coefficient, and safety coefficient were measured. The results showed that the addition of fillers did not give a significant improvement of characteristics.

2018 ◽  
Vol 49 ◽  
pp. 00010 ◽  
Author(s):  
Przemysław Brzyski ◽  
Grzegorz Łagód

One of the objectives of sustainable development in construction is the use of low-processed materials. They have a positive impact on the ecological balance of the building throughout the entire life cycle. Examples of such materials are materials of plant origin - straw, shives, cellulose fibers. They are used as thermal insulation or wall material. In recent years, hemp shives are increasingly used as a component of a lime-based composite, which performs the function of wall filling in timber frame constructions. The shives, due to the high porosity, determine the high thermal insulation properties of the composite. The physico-mechanical properties of the composite can be modified depending on various factors, including the ratio of hemp shives to the binder. The lime binder, in turn, can be modified by hydraulic and pozzolan additives. The paper presents mechanical properties (compressive and flexural strength) as well as physical properties (density, porosity, thermal conductivity coefficient, absorbability) of composites with various proportions of hemp shives of the Bialobrzeskie variety to the lime binder modified with Portland cement and metakaolinite.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1985 ◽  
Author(s):  
Mikelis Kirpluks ◽  
Edgars Vanags ◽  
Arnis Abolins ◽  
Slawomir Michalowski ◽  
Anda Fridrihsone ◽  
...  

High-quality rigid polyurethane (PU) foam thermal insulation material has been developed solely using bio-polyols synthesized from second-generation bio-based feedstock. High functionality bio-polyols were synthesized from cellulose production side stream—tall oil fatty acids by oxirane ring-opening as well as esterification reactions with different polyfunctional alcohols, such as diethylene glycol, trimethylolpropane, triethanolamine, and diethanolamine. Four different high functionality bio-polyols were combined with bio-polyol obtained from tall oil esterification with triethanolamine to develop rigid PU foam formulations applicable as thermal insulation material. The developed formulations were optimized using response surface modeling to find optimal bio-polyol and physical blowing agent: c-pentane content. The optimized bio-based rigid PU foam formulations delivered comparable thermal insulation properties to the petro-chemical alternative.


2020 ◽  
Author(s):  
◽  
Miķelis Kirpļuks

Rigid PU foams are versatile material commonly applied as a thermal insulation material. It can be applied as an impact absorption material in the automotive industry if material with sufficient mechanical properties has been developed. Further increase in mechanical properties can be achieved by developing nano-reinforced rigid PU foams. Majority of commercially used rigid PU foams are produced from non-renewable petrochemical-based raw materials. Although, renewable feedstock, as well as recycled materials, can be used to obtain rigid PU foams with equal properties. In this work, several bio-based, as well as APP polyols, have been used to develop rigid PU foams. Rigid PU foam thermal insulation material has to fulfil demanding flammability requirements. This is achieved by the introduction of different flame retardants into the material structure from which most common are halogenated flame retardants. Halogenated flame retardants are associated with different health hazards, thus their phase-out from the market can be expected. A good alternative to halogenated flame retardants are intumescent flame retardant solutions. The results and discussion of this thesis are divided into three parts: Part 1 describes the development of high-density rigid PU foam material for application as impact absorption material in the automotive industry. Sustainable origin polyols have been used to develop rigid PU foams and their influence on mechanical, thermal and morphological properties of the material has been studied. To further increase mechanical properties of the rigid PU foams a nano-composite with montmorillonite nano-clay was developed. Lastly, most optimal rigid PU foam formulations were upscaled to produce real scale automotive part, which was tested according to the European Union’s crash test requirements. Part 2 describes the development of rigid PU foam thermal insulation from bio-based polyols. Halogenated flame retardants were replaced using non-halogenated alternatives. Intumescent flame retardants, such as expandable graphite was used to significantly reduce the flammability of the rigid PU foam. Part 3; during high-density rigid PU foam development it was discovered that used bio-based polyols have too low OH group functionality. Thus, the functionality of the polyols was increased by developing different bio-polyol synthesis method. Rapeseed oil, as well as tall oil, were used as feedstock for high functionality bio-based polyol synthesis. The first step was an epoxidation of the unsaturated moieties of the bio-based oils. Afterwards, oxirane ring opening with different polyfunctional alcohols and simultaneous transesterification/esterification reactions were used to obtain desired polyol structures.


2015 ◽  
Vol 37 (2) ◽  
pp. 162-167
Author(s):  
V.A. Vilensky ◽  
◽  
L.V. Kobrina ◽  
S.V. Riabov ◽  
Y.Y. Kercha ◽  
...  

2017 ◽  
Vol 5 (2) ◽  
pp. 20-30
Author(s):  
Zaman Khalil Ibrahim

In this research aluminum matrix composites (AMCs) was reinforced by titanium carbide (TiC) particles and was produced. Powder metallurgy technique (PM) has been used to fabricate AMCs reinforced with various amounts (0%, 4%, 8%, 12%, 16% and 20% volume fraction) of TiC particles to study the effect of different volume fractions on mechanical properties of the Al-TiC composites. Measurements of compression strength and hardness showed that mechanical properties of composites increased with an increase in volume fraction of TiC Particles. Al-20 % vol. TiC composites exhibited the best properties with hardness value (97HRB) and compression strength value (275Mpa).


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1242
Author(s):  
Olga Mysiukiewicz ◽  
Paulina Kosmela ◽  
Mateusz Barczewski ◽  
Aleksander Hejna

Investigations related to polymer/metal composites are often limited to the analysis of the electrical and thermal conductivity of the materials. The presented study aims to analyze the impact of aluminum (Al) filler content (from 1 to 20 wt%) on the rarely investigated properties of composites based on the high-density polyethylene (HDPE) matrix. The crystalline structure, rheological (melt flow index and oscillatory rheometry), thermal (differential scanning calorimetry), as well as static (tensile tests, hardness, rebound resilience) and dynamic (dynamical mechanical analysis) mechanical properties of composites were investigated. The incorporation of 1 and 2 wt% of aluminum filler resulted in small enhancements of mechanical properties, while loadings of 5 and 10 wt% provided materials with a similar performance to neat HDPE. Such results were supported by the lack of disturbances in the rheological behavior of composites. The presented results indicate that a significant content of aluminum filler may be introduced into the HDPE matrix without additional pre-treatment and does not cause the deterioration of composites’ performance, which should be considered beneficial when engineering PE/metal composites.


2019 ◽  
Vol 299 ◽  
pp. 06007
Author(s):  
Mircea Aurelian Antoniu Rusu ◽  
Sever-Adrian Radu ◽  
Catalin Moldovan ◽  
Codruta Sarosi ◽  
Ionela Amalia Mazilu (Moldovan) ◽  
...  

Although polyethylene terephthalate (PET) is a champion of recycling, intense research is being done to find new solutions for using recycled plastic. This study aims to characterize the mechanical andstructural properties (SEM- scanning electron microscopy) of products made from recycled metal swarf or mesh wire with recycled plastic (PET) in comparison with virgin plastic. Samples manufactured from virgin and recycled PET are made by pressing and high temperature. The loss of mechanical properties ofproducts made from recycled plastic is a major drawback that influences their use. SEM images confirm that the dispersion and distribution of the PET phase is not very uniform. By addition of virgin plastic in various compositions with recycled plastic, processing parameters and mechanical properties can be optimized.


2005 ◽  
Vol 898 ◽  
Author(s):  
Devendra Verma ◽  
Rahul Bhowmik ◽  
Bedabibhas Mohanty ◽  
Dinesh R Katti ◽  
Kalpana S Katti

AbstractInterfaces play an important role in controlling the mechanical properties of composites. Optimum mechanical strength of scaffolds is of prime importance for bone tissue engineering. In the present work, molecular dynamics simulations and experimental studies have been conducted to study effect of interfacial interactions on mechanical properties of composites for bone replacement. In order to mimic biological processes, hydroxyapatite (HAP) is mineralized in presence of polyacrylic acid (PAAc) (in situ HAP). Further, solid and porous composites of in situ HAP with polycaprolactone (PCL) are made. Mechanical tests of composites of in situ HAP with PAAc have shown improved strain recovery, higher modulus/density ratio and also improved mechanical response in simulated body fluid (SBF). Simulation studies indicate potential for calcium bridging between –COO− of PAAc and surface calcium of HAP. This fact is also supported by infrared spectroscopic studies. PAAc modified surfaces of in situ HAP offer means to control the microstructure and mechanical response of porous composites. Nanoindentation experiments indicate that apatite grown on in situ HAP/PCL composites from SBF has improved elastic modulus and hardness. This work gives insight into the interfacial mechanisms responsible for mechanical response as well as bioactivity in biomaterials.


2011 ◽  
Vol 311-313 ◽  
pp. 301-308
Author(s):  
Shou Hong Han ◽  
Zhen Hua Lu ◽  
Yong Jin Liu

In order to investigate the multi-axial mechanical properties of a kind of PU (polyurethane) foam, some experiments in different loading conditions including uni-axial tension, uni-axial compression, hydrostatic compression and three-point bending were conducted. It is shown that the hydrostatic component influences yield behavior of PU foam, the yield strength and degree of strain hardening in hydrostatic compression exceed those for uni-axial compression. In terms of the differential hardening constitutive model, the evolution of PU foam yield surface and plastic hardening laws were fitted from experimental data. A finite element method was applied to analyze the quasi-static responses of the PU foam sandwich beam subjected to three-point bending, and good agreement was observed between experimental load-displacement responses and computational predictions, which validated the multi-axial loading methods and stress-strain constitutive model parameters. Moreover, effects of two foam models applied to uni-axial loading and multi-axial loading conditions were analyzed and compared with three-point bending tests and simulations. It is found that the multi-axial constitutive model can bring more accurate prediction whose parameters are obtained from the tests above mentioned.


Sign in / Sign up

Export Citation Format

Share Document