scholarly journals Flexural Behavior of a Novel Textile-Reinforced Polymer Concrete

Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 176
Author(s):  
Daniel Heras Murcia ◽  
Bekir Çomak ◽  
Eslam Soliman ◽  
Mahmoud M. Reda Taha

Textile reinforced concrete (TRC) has gained attention from the construction industry due to its light weight, high tensile strength, design flexibility, corrosion resistance, and remarkably long service life. Some structural applications that utilize TRC components include precast panels, structural repair, waterproofing elements, and façades. TRC is produced by incorporating textile fabrics into thin cementitious concrete panels. Premature debonding between the textile fabric and concrete due to improper cementitious matrix impregnation of the fibers was identified as a failure-governing mechanism. To overcome this performance limitation, in this study, a novel type of TRC is proposed by replacing the cement binder with a polymer resin to produce textile reinforced polymer concrete (TRPC). The new TRPC is created using a fine-graded aggregate, methyl methacrylate polymer resin, and basalt fiber textile fabric. Four different specimen configurations were manufactured by embedding 0, 1, 2, and 3 textile layers in concrete. Flexural performance was analyzed and compared with reference TRC specimens with similar compressive strength and reinforcement configurations. Furthermore, the crack pattern intensity was determined using an image processing technique to quantify the ductility of TRPC compared with conventional TRC. The new TRPC improved the moment capacity compared with TRC by 51%, 58%, 59%, and 158%, the deflection at peak load by 858%, 857%, 3264%, and 3803%, and the toughness by 1909%, 3844%, 2781%, and 4355% for 0, 1, 2, and 3 textile layers, respectively. TRPC showed significantly improved flexural capacity, superior ductility, and substantial plasticity compared with TRC.

2020 ◽  
Vol 23 (15) ◽  
pp. 3323-3334
Author(s):  
Buntheng Chhorn ◽  
WooYoung Jung

The bonding performance of basalt fiber-reinforced polymer and concrete substrate has a significant effect on the reliability of externally strengthened existing concrete structure, due to being the most vulnerable element to failure in this fiber-reinforced polymer–concrete strengthening system. Its failure can result in the failure of the whole structure. Although many previous researchers have been interested in the tensile bonding strength of carbon fiber-reinforced polymer and glass fiber-reinforced polymer–concrete interface, that of basalt fiber-reinforced polymer–concrete interface has been very limited. Thus, the objective of this study is to experimentally assess the tensile bonding strength of the basalt fiber-reinforced polymer–concrete interface. The effects of high temperature, freezing–thawing cycles, type of resin, and concrete crack widths on the tensile bonding strength are also investigated. The pull-off experiment is conducted according to ASTM D7522/D7522M-15. A total of 205 core specimens of 50 mm diameter and 10 mm depth were taken from 41 concrete beams. The experimental results illustrate that both freezing–thawing and high-temperature condition have a substantial effect on the bonding strength of the basalt fiber-reinforced polymer–concrete interface. Bonding strength was decreased within the range of about 9%–30% when the number of freezing–thawing cycles increases from 100 to 300; likewise, it was decreased up to 30% when the exposure temperature rises to 200°C. Also, the specimens which were repaired to close their cracks by epoxy resin had no significant effect on the bonding strength of basalt fiber-reinforced polymer–concrete interface, when the specimens had crack width of less than 1.5 mm.


Author(s):  
Mostafa Hassani Niaki ◽  
Morteza Ghorbanzadeh Ahangari ◽  
Abdolhossein Fereidoon

This paper studies the mechanical properties of polymer concrete (PC) with three types of resin systems. First, the effect of 0.5 wt% up to 3 wt% basalt fiber on the mechanical properties of a quaternary epoxy-based PC is investigated experimentally, and the best weight percentage of basalt fiber is obtained. The results show that adding basalt fiber to PC caused the greatest enhancement within 10% in compressive strength, 10% in flexural strength, 35% in the splitting tensile strength, and 315% in impact strength. In the next step, the effect of nanoclay particles on the mechanical properties of basalt fiber-reinforced PC (BFRPC) is analyzed experimentally. Nanoclays increase the compressive strength up to 7%, flexural strength up to 27%, and impact strength up to 260% but decrease the tensile strength of the PC. Field-emission scanning electron microscopy (FESEM) analysis is performed to study the fracture surface and morphology of various concrete specimens. In the last step, we consider the effect of two other different resin systems, rigid polyurethane and rigid polyurethane foam on the mechanical properties of reinforced polymer concrete. A comparison study presents that the epoxy PC has a higher specific strength than the polyurethane and ultra-lightweight polyurethane foam PC.


2014 ◽  
Vol 507 ◽  
pp. 209-216 ◽  
Author(s):  
Rui Gao ◽  
Qian Gu ◽  
Cheng Fang Sun ◽  
Yu Jia Peng

This experimental program was designed for investigating the seismic performance and reinforcement effect of pre-damaged RC frame T-beams reinforced with sprayed basalt fiber reinforced polymer (BFRP). Four RC frame T-shape beams specimens, among which one was unstrengthened , one was undamaged and strengthened , and the other two were pre-damaged and strengthened, were tested under an incremental loading procedure of the pseudo-static, cyclic shear loads. The test results including the failure mode, ultimate bearing capacity, load-displacement hysteresis curves and ductility of specimens were obtained and analyzed. It indicates that spraying BFRP reinforcement can effectively increase the peak load and energy dissipation performance of damaged RC frame T-beams, ultimate lateral deformation and ductility of damaged RC frame T-beams can be improved obviously. Increasing the reinforcement thickness of sprayed BFRP can effectively improve the seismic reinforcement effect of T-shaped beams damaged by the earthquake.


Author(s):  
R Pramod ◽  
S Basavarajappa ◽  
GB Veeresh Kumar ◽  
Murthy Chavali

The knowledge of polymer matrix composites machinability has increased with its rise in multi-field structural applications. Drilling of polymer matrix composites is required to achieve structural integration with greater accuracies. Delamination due to drilling affects the material strength and it occurs at both the entry and hole exit planes. The delamination on the exit plane is critical. The effect of nano-fillers on drilling-induced delamination of reinforced plastics has not been documented extensively and in this article, an attempt is made to explore the application potential of montmorillonite clay and graphene with amine functionalization in minimizing delamination through toughening the epoxy matrix. Experimentation was based on Taguchi’s L16 approach. The delamination factor and circularity ratio were analyzed using an image processing technique in Matlab and Image J. To evaluate the effects of various parameters and parameters interaction effect on the delamination factor, ANOVA was employed and Signal/noise ratios were calculated. The mathematical models were developed for delamination. It was observed that the reduction in the delamination factor was observed in nanoclay and graphene reinforced polymer matrix toughened composites in comparison to the base composites with a reduction in thrust force, specific cutting energy, and increase in circularity ratio.


2021 ◽  
Vol 309 ◽  
pp. 01172
Author(s):  
G. Prashanth Naik ◽  
K Hemalatha ◽  
Srikanth Konik

This paper present the experimental result of flexural behavior of Hybrid Fiber Reinforced Polymer (HFRP) concrete beams reinforced with Glass Fiber Reinforced Polymer (GFRP) rebars and steel bars. This experiment is conducted with the aim of replacing steel reinforcement with GFRP rebars to reduce the risk of corrosion of steel in concrete structures. The data presented in this study is obtained by conducting flexural test experiment on four beams of HFRP beams with various PVA fibre dosage of 0%, 0.25% and 0.5% and one Pure FRP beam. Fly ash is added by 25% in the mix as a mineral admixture to control the shrinkage cracks. The test result showed that by addition of PVA fibre in HFRP concrete enhance the mechanical properties of beam like deflections, ductility, load carrying capacity and flexural capacity. The optimum dosage of PVA fibre is 0.25%. which improve flexural strength by 200% and 31.1% and ductility increased by 112.2% and 55.12% as compared with Pure FRP beam and HFRP beam without PVA fibre.


2018 ◽  
Vol 4 (12) ◽  
pp. 2903
Author(s):  
Omar Hamid Hussien ◽  
Amer M. Ibrahim ◽  
Suhad M. Abd

Textile reinforced concrete that developed at recent years is composed of the continuous textile fabric incorporated into the cementitious matrix. The geometry of the textile reinforcements has a great influence on the TRC overall behavior since it affects the bond efficiency perfectly. The effect of weft yarns removing on the flexural behavior of (1500 × 500 × 50) mm one way slabs was investigated, eight layers of the carbon fabric were used with (50%, 67% and 75%) removing of weft yarns in addition to one specimen without removing. The four one- way slabs were casted by hand lay-up method, cured for (28) days and tested in flexure using four points method. The bending capacity and the bond efficiency factor were calculated according to the conditions of the equilibrium models by comparing with experimental results. The results revealed that with higher removing proportion there was a perfect improvement in the flexural capacity, higher first crack load, eminent post cracking stiffness, higher average concrete strain and lower ultimate mid span deflection and higher toughness and ductility. Furthermore, the results clarified that there is an optimum percent of weft yarns removing at which the damage occurrence around the weft yarns is significantly reduced, and this negative effect constriction overcome the positive anchoring effect.


Sign in / Sign up

Export Citation Format

Share Document