scholarly journals Designing Phenyl Porous Organic Polymers with High-Efficiency Tetracycline Adsorption Capacity and Wide pH Adaptability

Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 203
Author(s):  
Wenjie Nie ◽  
Jiao Liu ◽  
Xue Bai ◽  
Zefeng Xing ◽  
Ying Gao

Adsorption is an effective method to remove tetracycline (TC) from water, and developing efficient and environment-friendly adsorbents is an interesting topic. Herein, a series of novel phenyl porous organic polymers (P-POPs), synthesized by one-pot polymerization of different ratios of biphenyl and triphenylbenzene under AlCl3 catalysis in CH2Cl2, was studied as a highly efficient adsorbent to removal of TC in water. Notably, the obtained POPs possessed abundant phenyl-containing functional groups, large specific surface area (1098 m2/g) with abundant microporous structure, high pore volume (0.579 cm3/g), favoring the removal of TC molecules. The maximum adsorption capacity (fitted by the Sips model) could achieve 581 mg/g, and the adsorption equilibrium is completed quickly within 1 h while obtaining excellent removal efficiency (98%). The TC adsorption process obeyed pseudo-second-order kinetics and fitted the Sips adsorption model well. Moreover, the adsorption of POPs to TC exhibited a wide range of pH (2–10) adaptability and outstanding reusability, which could be reused at least 5 times without significant changes in structure and efficiency. These results lay a theoretical foundation for the application of porous organic polymer adsorbents in antibiotic wastewater treatment.

2018 ◽  
Vol 78 (7) ◽  
pp. 1615-1623 ◽  
Author(s):  
N. Priyantha ◽  
H. K. W. Sandamali ◽  
T. P. K. Kulasooriya

Abstract Although rice husk (RH) is a readily available, natural, heavy metal adsorbent, adsorption capacity in its natural form is insufficient for certain heavy metal ions. In this context, the study is based on enhancement of the adsorption capacity of RH for Cu(II). NaOH modified rice husk (SRH) shows higher extent of removal for Cu(II) ions than that of heated rice husk (HRH) and HNO3 modified rice husk (NRH). The extent of removal of SRH is increased with the concentration of NaOH, and the optimum NaOH concentration is 0.2 mol dm−3, used to modify rice husk for further studies. The surface area of SRH is 215 m2 g−1, which is twice as much as that of HRH according to previous studies. The sorption of Cu(II) on SRH obeys the Langmuir adsorption model, leading to the maximum adsorption capacity of 1.19 × 104 mg kg−1. Kinetics studies show that the interaction of Cu(II) with SRH obeys pseudo second order kinetics. The X-ray fluorescence spectroscopy confirms the adsorption of Cu(II) on SRH, while desorption studies confirm that Cu(II) adsorbed on SRH does not leach it back to water under normal conditions.


Nanoscale ◽  
2021 ◽  
Author(s):  
Devin S. Rollins ◽  
Charles P. Easterling ◽  
Andrea N. Zeppuhar ◽  
Jacob A. Krawchuck ◽  
Timothy A. Dreier ◽  
...  

A templated synthetic approach to porous organic polymers, in which branched, rigid monomers are pre-assembled around a target ion before polymerization, can significantly enhance the ion adsorption capacity of the resulting polymer.


2009 ◽  
Vol 4 (2) ◽  
Author(s):  
Nassima Tazrouti ◽  
Moussa Amrani

Activated lignin having surface area of 1023 m2.g-1 has been prepared from sulfate lignin that was treated by 30 % H2O2 and carbonized at 300 °C in order to test the chromium (VI) adsorption from aqueous solution. The influence of contact time, pH, initial concentration of adsorbent and adsorbate and temperature on the adsorption capacity were investigated. The maximum removal of Cr(VI) was found to be 92,36 % at pH=2 and contact time of 80 min. Optimal concentration of lignin and Cr(VI) were found to be 3.8 g.l-1 and 180 mg.l-1, respectively. The adsorption kinetics was tested pseudo-first-order and pseudo-second-order equation. The analytical data were fitted well in a pseudo-second-order equation and the rate of removal of chromium was found to speed up with increasing temperature. Activation energy for the adsorption process was found to be 18.19 Kj.mol-1. The Langmuir and Freundlich adsorption isotherm models were applied to describe the isotherm and isotherm constants for the adsorption of Cr (VI) on lignin. These constants and correlation coefficients of the isotherm models were calculated and compared. Results indicated that Cr (VI) uptake could be described by the Langmuir adsorption model. The maximum adsorption capacity (qm) of Cr (VI) on lignin was 75.75 mg.g-1 at temperature of 40°C. The dimensionless equilibrium parameter (RL) signified a favorable adsorption of Cr (VI) on lignin and was found between 0.0601 and 0.818 (0<RL<1). The thermodynamic parameters like ΔG°, ΔS° and ΔH° were calculated and it has been found that the reaction was spontaneous and endothermic in nature. This study indicates that lignin has the potential to become an effective and economical adsorbent for removal Cr (VI) from the waste water.


2020 ◽  
Vol 83 (1) ◽  
pp. 45-55
Author(s):  
Adel Fisli ◽  
Rahma Dina Safitri ◽  
Nurhasni Nurhasni ◽  
Sari Hasnah Dewi ◽  
Deswita Deswita

This paper focused on the studying of adsorption properties of Fe3O4-waste paper activated carbon composites for the removal of methylene blue dyes from water. The various parameters were carried out for the adsorption test of the composites, namely; contact time, adsorbent dose, initial MB concentration, pH solution, and temperature. The adsorption of isotherm, thermodynamics and kinetic was used to determine the characteristics of methylene blue adsorption onto the prepared adsorbent. The result indicates that the optimum adsorption capacity has occurred at pH = 6 in water solution. The adsorption capacity increase as the temperature increase until at 315K (45oC). The Langmuir isotherm is more appropriate to be applied as the adsorption model with the maximum adsorption capacity (qm) value of 101 and 93 mg/g for KA HCl-Fe3O4 and KA-Fe3O4 composites, respectively. The value of adsorption thermodynamic parameters was positive for ΔH, negative for ΔGo and positive for ΔSo, meaning the process adsorptions were endothermic, feasibility and spontaneity and randomness, respectively. The pseudo-second-order model was appropriate to predict the kinetic models for methylene blue adsorption onto the composites. The obtained adsorbent composites possess high adsorption efficiency and rapid magnetic separation. They were a promising for practical wastewater treatment for dyes removal from water.


Author(s):  
Luyao Lin ◽  
Ye Li ◽  
Jie Wan ◽  
Cong Liu ◽  
Xiaoli Wang ◽  
...  

Abstract In recent years, TNS has attracted wide attention because of its simplicity in synthesis and high efficiency in ion exchange. The adsorption of cesium ions in aqueous solution by TNS was investigated in this stud. Results show that the removal rate of Cs (I) is about 88% when pH = 5.00 ± 0.05, C0 = 10 ppm and CTNS = 0.1 g/L. The adsorption equilibrium is reached in about 20 minutes and best fits pseudo-second order model, R2 = 0.9998; Compared with the Freundlich isotherm adsorption model and Temkin model, the Langmuir model has the best fitting effect, R2 = 0.9903. The fitting results show the maximum adsorption capacity of TNS for Cs (I) is 200.00 mg/g. The main adsorption mechanism of TNS to cesium ion is ion exchange. Therefore, TNS can be used as a potential adsorbent for effectively adsorbing Cs-containing wastewater.


2021 ◽  
Vol 10 (1) ◽  
pp. 117-125
Author(s):  
Xiaobo Liu ◽  
Shuang Lu ◽  
Zhen Tang ◽  
Zhaojia Wang ◽  
Tianyong Huang

Abstract Because of its priority to remove anions, nano-layered double hydroxide (LDH) was incorporated to improve the sulfate attack corrosion resistance of cement-based materials. Herein, the synthesis of high-efficiency LDH for removal of SO 4 2 − {\text{SO}}_{4}^{2-} is necessary. In this study, LDH with different Mg/Al ratios was synthesized under different dual solvent systems (water and ethylene glycol/ethanol/tetrapropylammonium hydroxide). Based on the adsorption experimental results, the LDH synthesized with n(Mg:Al) = 2:1 under water and ethanol solvent systems (ET2.0) exhibits the best adsorption capacity. The d (003) of LDH synthesized with n(Mg:Al) = 2:1 under different dual solvent systems are 0.7844, 0.7830, and 0.7946 nm, respectively. Three LDH belong to LDH- NO 3 − {\text{NO}}_{3}^{-} . The results indicated that their surface charges show obvious difference synthesized under different dual solvent systems, which leads to differences in adsorption performance. The adsorption experimental results show that ET2.0 followed pseudo second-order kinetics and Langmuir model. The ET2.0 removed SO 4 2 − {\text{SO}}_{4}^{2-} through anion substitution and electrostatic interaction and exhibited excellent adsorption rate with the maximum adsorption capacity of 95.639 mg/g. The effects of pore solution anion (OH−, Cl−, and CO 3 2 − {\text{CO}}_{3}^{2-} ) on the removal of SO 4 2 − {\text{SO}}_{4}^{2-} by the ET2.0 are limited.


2019 ◽  
Vol 12 (03) ◽  
pp. 1950031
Author(s):  
Shuquan Chang ◽  
Yangzhou Liu ◽  
Heliang Fu ◽  
Buxiong Wang ◽  
Zheng Li ◽  
...  

Potassium iron hexacyanoferrate/polyacrylamide nanohybrid hydrogel (PB/PAM-gel) was successfully synthesized via a convenient one-pot gamma radiation route. The as-prepared PB/PAM-gel has compact internal three-dimensional porous structures with well-dispersed PB nanowires, which exhibit good elasticity and excellent swelling performance. The adsorption experiments reveal that the PB/PAM-gel can rapidly and selectively adsorb Cs[Formula: see text] from the solution in a wide range of pH. The maximum adsorption capacity reaches 131[Formula: see text]mg[Formula: see text]g[Formula: see text]. This nanohybrid hydrogel is very stable and can be easily separated from the solution after adsorption. It can be applied as a potential adsorbent for Cs[Formula: see text] removal from radioactive wastewater.


Author(s):  
Pramod Kumar ◽  
Animesh Das ◽  
Biplab Maji

The phosphorous-containing porous organic polymer is a trending material for the synthesis of heterogeneous catalysts. Decades of investigations have established phosphines as versatile ligands in homogeneous catalysis. Recently, phosphine-based heterogeneous...


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1422
Author(s):  
Viktor V. Revin ◽  
Alexander V. Dolganov ◽  
Elena V. Liyaskina ◽  
Natalia B. Nazarova ◽  
Anastasia V. Balandina ◽  
...  

Currently, there is an increased demand for biodegradable materials in society due to growing environmental problems. Special attention is paid to bacterial cellulose, which, due to its unique properties, has great prospects for obtaining functional materials for a wide range of applications, including adsorbents. In this regard, the aim of this study was to obtain a biocomposite material with adsorption properties in relation to fluoride ions based on bacterial cellulose using a highly productive strain of Komagataeibacter sucrofermentans H-110 on molasses medium. Films of bacterial cellulose were obtained. Their structure and properties were investigated by FTIR spectroscopy, NMR, atomic force microscopy, scanning electron microscopy, and X-ray structural analysis. The results show that the fiber thickness of the bacterial cellulose formed by the K. sucrofermentans H-110 strain on molasses medium was 60–90 nm. The degree of crystallinity of bacterial cellulose formed on the medium was higher than on standard Hestrin and Schramm medium and amounted to 83.02%. A new biocomposite material was obtained based on bacterial cellulose chemically immobilized on its surface using atomic-layer deposition of nanosized aluminum oxide films. The composite material has high sorption ability to remove fluoride ions from an aqueous medium. The maximum adsorption capacity of the composite is 80.1 mg/g (F/composite). The obtained composite material has the highest adsorption capacity of fluoride from water in comparison with other sorbents. The results prove the potential of bacterial cellulose-based biocomposites as highly effective sorbents for fluoride.


2021 ◽  
Vol 2 (2) ◽  
pp. 245-256
Author(s):  
Priyanka R. Sharma ◽  
Sunil K. Sharma ◽  
Marc Nolan ◽  
Wenqi Li ◽  
Lakshta Kundal ◽  
...  

Raw wood was subjected to sequential oxidation to produce 2,3,6-tricarboxycellulose (TCC) nanofibers with a high surficial charge of 1.14 mmol/g in the form of carboxylate groups. Three oxidation steps, including nitro-oxidation, periodate, and sodium chlorite oxidation, were successfully applied to generate TCC nanofibers from raw wood. The morphology of extracted TCC nanofibers measured using TEM and AFM indicated the average length, width, and thickness were in the range of 750 ± 110, 4.5 ± 1.8, and 1.23 nm, respectively. Due to high negative surficial charges on TCC, it was studied for its absorption capabilities against Pb2+ ions. The remediation results indicated that a low concentration of TCC nanofibers (0.02 wt%) was able to remove a wide range of Pb2+ ion impurities from 5–250 ppm with an efficiency between 709–99%, whereby the maximum adsorption capacity (Qm) was 1569 mg/g with R2 0.69531 calculated from Langmuir fitting. It was observed that the high adsorption capacity of TCC nanofibers was due to the collective effect of adsorption and precipitation confirmed by the FTIR and SEM/EDS analysis. The high carboxylate content and fiber morphology of TCC has enabled it as an excellent substrate to remove Pb2+ ions impurities.


Sign in / Sign up

Export Citation Format

Share Document