scholarly journals Effective Stiffness of Fused Deposition Modeling Infill Lattice Patterns Made of PLA-Wood Material

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 337
Author(s):  
Enrique Cuan-Urquizo ◽  
Alberto Álvarez-Trejo ◽  
Andrés Robles Robles Gil ◽  
Viridiana Tejada-Ortigoza ◽  
Carmita Camposeco-Negrete ◽  
...  

Fused deposition modeling (FDM) uses lattice arrangements, known as infill, within the fabricated part. The mechanical properties of parts fabricated via FDM are dependent on these infill patterns, which make their study of great relevance. One of the advantages of FDM is the wide range of materials that can be employed using this technology. Among these, polylactic acid (PLA)-wood has been recently gaining attention as it has become commercially available. In this work, the stiffness of two different lattice structures fabricated from PLA-wood material using FDM are studied: hexagonal and star. Rectangular samples with four different infill densities made of PLA-wood material were fabricated via FDM. Samples were subjected to 3-point bending to characterize the effective stiffness and their sensitivity to shear deformation. Lattice beams proved to be more sensitive to shear deformations, as including the contribution of shear in the apparent stiffness of these arrangements leads to more accurate results. This was evaluated by comparing the effective Young’s modulus characterized from 3-point bending using equations with and without shear inclusion. A longer separation between supports yielded closer results between both models (~41% for the longest separation tested). The effective stiffness as a function of the infill density of both topologies showed similar trends. However, the maximum difference obtained at low densities was the hexagonal topology that was ~60% stiffer, while the lowest difference was obtained at higher densities (star topology being stiffer by ~20%). Results for stiffness of PLA-wood samples were scattered. This was attributed to the defects at the lattice element level inherent to the material employed in this study, confirmed via micro-characterization.

2020 ◽  
Vol 15 ◽  
pp. 155892502094821
Author(s):  
Tatjana Spahiu ◽  
Eriseta Canaj ◽  
Ermira Shehi

3D printing is a well-known technology for creating 3D objects by laying down successive layers of various materials. Among the wide range of applications, fashion industry has adapted these technologies to revolutionize their brands. But due to the unique characteristics of textiles like comfort, flexibility, and so on, attempts have been made to create similar structures as textiles. The work presented here is part of a project to create garments using fused deposition modeling as 3D printing technology. Structures with various geometries are designed and tested with different materials starting from rigid to flexible. As a result, a fully 3D printed dress is created. Selecting this dress as a model, consumer acceptance for 3D printed garments is evaluated realizing an online survey containing 100 respondents. The data gathered show that respondents have knowledge of 3D printing, its advantages and the majority of them would accept wearing a 3D printed dress.


2020 ◽  
Vol 5 (2) ◽  
pp. 057-062
Author(s):  
Juraj Beniak ◽  
Miloš Matúš ◽  
Ľubomír Šooš ◽  
Peter Križan

The aim of using additive manufacturing technologies is to be able to produce a wide range of component designs on a single device, using a wide range of materials and minimizing material consumption. There are several technologies that work on different principles. The present article is focused on Fused Deposition Modeling (FDM) technology, which is focused on the application of layers of semi-molten polymer. The advantage is the lower cost for obtaining of FDM device, but also the low operation cost. The output of production are complex components designed for prototyping, but also for final use. Due to the fact that there is requirement to produce parts also for final use, it is necessary to know the strength properties of the parts after production. Because the structure of parts volume is not homogeneous, it is not possible to subject it to conventional calculations and simulations, but it is necessary to take into account the specifics that are produced during production by FDM technology. The present paper shows the results of experimental determination of the tensile strength of manufactured parts. A series of samples with different properties was used on the FDM device and the tensile strength of the components was subsequently measured. The measured values ​​were compared and evaluated.


2016 ◽  
Vol 832 ◽  
pp. 152-158
Author(s):  
Juraj Beniak ◽  
Miloš Matúš ◽  
Peter Križan

Technologies dedicated to the rapid prototyping uses a wide range of materials. The mostly used plastic materials are based on polymers. It is for example an Acrylonitrile Butadiene Styrene (ABS), Nylon, Polycarbonate (PC), or composites based on different polymers. New devices designed for the production of a prototype models, based on Fused Deposition Modeling (FDM) are able to work with environmentally friendly and biodegradable materials as Polylactic acid (PLA). The aim of this paper is to show the possibility of using materials based on organic polymers whose properties are comparable to conventionally used polymers. Presented are measured and statistically evaluated data related to basic properties of PLA material.


2020 ◽  
Vol 15 ◽  
pp. 155892502093344 ◽  
Author(s):  
Timo Grothe ◽  
Bennet Brockhagen ◽  
Jan Lukas Storck

The combination of textiles and three-dimensional printing offers a wide range of research and application areas, but only publications in combination with fused deposition modeling processes can be found so far. In this article the possibility of printing resin directly on textiles in the stereolithography process is presented. A broad spectrum of textiles and surfaces is examined to clearly present the feasibility. It was found that printing directly on most textiles can be performed without major difficulties, while problems were only observed on smooth surfaces and coatings on textiles.


2020 ◽  
Vol 979 ◽  
pp. 74-83
Author(s):  
Penumuru Kumar ◽  
Arumugam Mahamani ◽  
B. Durga Prasad

In the present scenario, the industries are looking for creating the model quickly and making the prototype. Additive manufacturing (AM) is a rising technology for a hefty choice of applications. This route has plenty of advantages such as the availability of a wide range of materials, fabrication speed and resolution of the final components. The current paper deals with the review of the recent developments in additive manufacturing methods and their applications. Further, the discussion has been made about the various materials used for additive manufacturing such as ceramic, polymer, composites and biomaterials. The survey denotes that fused deposition modeling has received the widespread attention of the researchers. Finally, some of the gaps in the research are found and reported.


2020 ◽  
Vol 10 (9) ◽  
pp. 3170 ◽  
Author(s):  
Elisa Padovano ◽  
Marco Galfione ◽  
Paolo Concialdi ◽  
Gianni Lucco ◽  
Claudio Badini

Fused-deposition modeling (FDM) is an additive manufacturing technique which is widely used for the fabrication of polymeric end-use products in addition to the development of prototypes. Nowadays, there is an increasing interest in the scientific and industrial communities for new materials showing high performance, which can be used in a wide range of applications. Ultem 9085 is a thermoplastic material that can be processed by FDM; it recently emerged thanks to such good properties as excellent flame retardancy, low smoke generation, and good mechanical performance. A deep knowledge of this material is therefore necessary to confirm its potential use in different fields. The aim of this paper is the investigation of the mechanical and thermal properties of Ultem 9085. Tensile strength and three-point flexural tests were performed on samples with XY, XZ, and ZX building orientations. Moreover, the influence of different ageing treatments performed by varying the maximum reached temperature and relative humidity on the mechanical behavior of Ultem 9085 was then investigated. The thermal and thermo-oxidative behavior of this material was also determined through thermal-gravimetric analyses.


Author(s):  
Michael A. Luzuriaga ◽  
Danielle R. Berry ◽  
John C. Reagan ◽  
Ronald A. Smaldone ◽  
Jeremiah J. Gassensmith

Biodegradable polymer microneedle (MN) arrays are an emerging class of transdermal drug delivery devices that promise a painless and sanitary alternative to syringes; however, prototyping bespoke needle architectures is expensive and requires production of new master templates. Here, we present a new microfabrication technique for MNs using fused deposition modeling (FDM) 3D printing using polylactic acid, an FDA approved, renewable, biodegradable, thermoplastic material. We show how this natural degradability can be exploited to overcome a key challenge of FDM 3D printing, in particular the low resolution of these printers. We improved the feature size of the printed parts significantly by developing a post fabrication chemical etching protocol, which allowed us to access tip sizes as small as 1 μm. With 3D modeling software, various MN shapes were designed and printed rapidly with custom needle density, length, and shape. Scanning electron microscopy confirmed that our method resulted in needle tip sizes in the range of 1 – 55 µm, which could successfully penetrate and break off into porcine skin. We have also shown that these MNs have comparable mechanical strengths to currently fabricated MNs and we further demonstrated how the swellability of PLA can be exploited to load small molecule drugs and how its degradability in skin can release those small molecules over time.


Sign in / Sign up

Export Citation Format

Share Document