scholarly journals Effective Heavy Metals Removal from Water Using Nanomaterials: A Review

Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 645 ◽  
Author(s):  
Mohamed A. Tahoon ◽  
Saifeldin M. Siddeeg ◽  
Norah Salem Alsaiari ◽  
Wissem Mnif ◽  
Faouzi Ben Rebah

The discharge of toxic heavy metals including zinc (Zn), nickel (Ni), lead (Pb), copper (Cu), chromium (Cr), and cadmium (Cd) in water above the permissible limits causes high threat to the surrounding environment. Because of their toxicity, heavy metals greatly affect the human health and the environment. Recently, better remediation techniques were offered using the nanotechnology and nanomaterials. The attentions were directed toward cost-effective and new fabricated nanomaterials for the application in water/wastewater remediation, such as zeolite, carbonaceous, polymer based, chitosan, ferrite, magnetic, metal oxide, bimetallic, metallic, etc. This review focused on the synthesis and capacity of various nanoadsorbent materials for the elimination of different toxic ions, with discussion of the effect of their functionalization on the adsorption capacity and separation process. Additionally, the effect of various experimental physicochemical factors on heavy metals adsorption, such as ionic strength, initial ion concentration, temperature, contact time, adsorbent dose, and pH was discussed.

Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2659
Author(s):  
Muhammad Zaim Anaqi Zaimee ◽  
Mohd Sani Sarjadi ◽  
Md Lutfor Rahman

Natural occurrence and anthropogenic practices contribute to the release of pollutants, specifically heavy metals, in water over the years. Therefore, this leads to a demand of proper water treatment to minimize the harmful effects of the toxic heavy metals in water, so that a supply of clean water can be distributed into the environment or household. This review highlights several water treatment methods that can be used in removing heavy metal from water. Among various treatment methods, the adsorption process is considered as one of the highly effective treatments of heavy metals and the functionalization of adsorbents can fully enhance the adsorption process. Therefore, four classes of adsorbent sources are highlighted: polymeric, natural mineral, industrial by-product, and carbon nanomaterial adsorbent. The major purpose of this review is to gather up-to-date information on research and development on various adsorbents in the treatment of heavy metal from water by emphasizing the adsorption capability, effect of pH, isotherm and kinetic model, removal efficiency and the contact of time of every adsorbent.


1992 ◽  
Vol 26 (9-11) ◽  
pp. 2309-2312 ◽  
Author(s):  
J. S. D'Avila ◽  
C. M. Matos ◽  
M. R. Cavalcanti

The processes used to remove heavy metals from inorganic wastewater have in general low efficiency. The use of activated peat obtained by using a process similar to a cation exchange reaction increases the removal efficiency up to five times when compared with peat “in natura”. The main objective of this work is to show the fundamental mathematical model, governed by diffusion process and the algorithms utilized to design the batch and the continuous feed stirred tank reactors or in some cases a fixed bed reactor. The principal dimensions of these equipments are obtained from the knowledge of the activated peat's cation exchange capacity used in the process, and the main chemical characteristics of the heavy metal ion contained in the wastewater. Besides, two important parameters are also included: the ion concentration and the efficiency of the process obtained from laboratory kinetics experiments. For example Pb+2 is removed l:rom a wastewater at a concentration of 50g/m3 in five minutes or less, with an efficiency of 98%.


2020 ◽  
Vol 17 (1) ◽  
pp. 4-22
Author(s):  
Saifeldin M. Siddeeg ◽  
Mohamed A. Tahoon ◽  
Norah S. Alsaiari ◽  
Muhamad Shabbir ◽  
Faouzi B. Rebah

Background: Nanomaterials offer promising remediation techniques for water containing toxic pollutants especially heavy metals. Method: A complete analysis of the application of nano-adsorbents for heavy metals removal from water has been reviewed. The effect of their functionalization on the adsorption capacity, the reusability, and the surface area has also been discussed. Result: In particular, the focus was on the applications of graphene oxide, carbon, silica, titanium dioxide, and iron oxide for water treatment. Additionally, the effect of functional groups on heavy metal selectivity has been discussed as well. Conclusion: This article will provide environmental engineers and academicians with information related to the latest engineered nanomaterials employed for the treatment of wastewater containing toxic heavy metals.


Author(s):  
Stephanie B. Tumampos ◽  
Benny Marie B. Ensano ◽  
Sheila Mae B. Pingul-Ong ◽  
Dennis C. Ong ◽  
Chi-Chuan Kan ◽  
...  

The ubiquitous occurrence of heavy metals in the aquatic environment remains a serious environmental and health issue. The recovery of metals from wastes and their use for the abatement of toxic heavy metals from contaminated waters appear to be practical approaches. In this study, manganese was recovered from groundwater treatment sludge via reductive acid leaching and converted into spherical aggregates of high-purity MnO2. The as-synthesized MnO2 was used to adsorb Cu(II) and Pb(II) from single-component metal solutions. High metal uptake of 119.90 mg g−1 for Cu(II) and 177.89 mg g−1 for Pb(II) was attained at initial metal ion concentration, solution pH, and temperature of 200 mg L−1, 5.0, and 25 °C, respectively. The Langmuir isotherm model best described the equilibrium metal adsorption, indicating that a single layer of Cu(II) or Pb(II) was formed on the surface of the MnO2 adsorbent. The pseudo-second-order model adequately fit the Cu(II) and Pb(II) kinetic data confirming that chemisorption was the rate-limiting step. Thermodynamic studies revealed that Cu(II) or Pb(II) adsorption onto MnO2 was spontaneous, endothermic, and had increased randomness. Overall, the use of MnO2 prepared from groundwater treatment sludge is an effective, economical, and environmentally sustainable substitute to expensive reagents for toxic metal ion removal from water matrices.


Author(s):  
Enas N. Danial ◽  
Walaa A Majrashi ◽  
Ahlam O. Bin Afif ◽  
Ebtehal S Alamri ◽  
Entesar M. Alhatimi ◽  
...  

Environmental pollution of heavy metals is increasingly becoming a problem and has become of great concern due to the adverse effects it is causing around the world. These inorganic pollutants are being discarded in our waters, soils and into the atmosphere due to the rapidly growing agriculture and metal industries, improper waste disposal, fertilizers, and pesticides. Pollution in industrial areas is a serious environmental concern. Wastewater containing biotoxic substances of heavy metals in the ecosystem is one of the most important environmental and health challenges in our society. Hence, there is a growing need for the development of novel, efficient, eco-friendly, and cost-effective approach for the remediation of inorganic metals (Cr, Hg, Cd, and Pb) released into the environment and to safeguard the ecosystem. Mercury (Hg), Chromium (Cr), Cadmium (Cd), and lead (Pb) are known to cause damage to living organisms, including human beings. In this regard, recent advances in microbes-base heavy metal have propelled bioremediation as a prospective alternative to conventional techniques. Heavy metals are nonbiodegradable and could be toxic to microbes. Several microorganisms have evolved to develop detoxification mechanisms to counter the toxic effects of these inorganic metals. Several marine bacteria highly resistant and capable of growing at higher concentrations of Hg, Cr, Cd and Pb and to evaluate their potential to detoxify. Their detoxification efficiency for Hg, Cr, Cd and Pb indicates good potential for application in bioremediation of toxic heavy metals.


2019 ◽  
Vol 81 (5) ◽  
Author(s):  
Najaa Syuhada Mohamad Thani ◽  
Rozidaini Mohd Ghazi ◽  
Mohd Faiz Mohd Amin ◽  
Zulhazman Hamzah

Water pollution by toxic heavy metals is a global environmental problem. It has led to the development of alternative technologies for heavy metals removal from contaminated sites. Constructed wetland microcosm by using Alocasia puber is a possible treatment method for wastewater containing heavy metals. Synthetic wastewater with heavy metals Cd, Cr, Cu, Ni, and Zn were used in this study. Several heavy metals concentrations (5 mg/L, 10 mg/L and 100 mg/L) were used in the systems. Six different hydraulic retention times (HRTs) (2, 4, 6, 8, 10 and 12 days) were tested in the present study. The results obtained showed removal efficiencies of heavy metals of >99% after day 12. The removal of Ni from 10 mg/L solutions (initial concentrations) recorded the best removal efficiency. Heavy metal translocation factor (TF) was found to be less than 1 for all metals tested, which confirmed the significance of roots as heavy metals accumulator compared to stems or leaves of A, puber. Therefore, this study concluded that A, puber has a great potential as an important component in constructed wetlands for water contaminated with heavy metals.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2082
Author(s):  
Ana Rita Oliveira ◽  
António Alberto Correia ◽  
Maria Graça Rasteiro

Carbon nanotubes (CNTs) are one of the most studied nanoparticles due to their physical, chemical and electronic properties. However, strong Van der Waals bonds, which promote CNTs aggregation are usually present, affecting their unique properties. Avoiding CNTs aggregation is one of the main difficulties when using these nanoparticles. Regarding the adsorption capacity of CNTs, the tendency of CNTs to aggregate decreases the surface area available to retain contaminants. One way to overcome this issue is by changing the surface energy of CNTs through chemical (covalent and noncovalent methods) or mechanical stabilization, but there is not yet a unique solution to solve this problem. In this work, a chemical noncovalent method (addition of surfactants) combined with mechanical energy (ultrasounds) was applied for CNTs stabilization, and the influence in heavy metal ions removal, Pb (II), Cu (II), Ni (II) and Zn (II), an area of high environmental relevance, was evaluated. It was proved that high amounts of metals could be removed from water during the first eighteen hours. Competitive adsorption between heavy metals, during adsorption tests with the simultaneous presence of all ions, was also studied and it was possible to prove that the electronegativity and atomic radius of cations influence their removal. Pb (II) and Cu (II) were the metals removed in higher percentages, and Ni (II) and Zn (II) were the metals less removed during competitive adsorption. Finally, the results obtained show that MWCNTs, if adequately dispersed, present a good solution for the treatment of water contaminated with highly toxic heavy metals, even when using very low concentrations of Multiwall Carbon Nanotubes (MWCNTs).


2018 ◽  
Vol 1 (4) ◽  
Author(s):  
Tzung-Yuh Yeh ◽  
Chitsan Lin

Heavy metal contaminated soil due to industrial, agricultural and municipal activities is becoming a global concern. Heavy metals severely affect plants, animals and human health. A suitable technology is necessary for heavy metals removal because it cannot self-decomposition as organic compounds. Among the various technologies surveyed, phytoremediation is one of the safest, most innovative, environmental friendly and cost-effective approach for heavy metals removal. Nevertheless, traditional phytoremediation practices pose some limitations such as long processing time, unstable treatment efficiency and limited application at large scale. In many methods proposed to improve phytoremediation, integrated phytoremediation has been studied in the recent years. Integrated phytoremediation use chelating agents and phytohormones to enhance phytoremediation. This is an environmentally safe, saving time and relative high effective method. Results showed that the association of a metal ion and a chelating agent to form chelates helps to maintain the availability of metals in the soil for the uptake of plants. Phytohormones supply nutrients for the soil to support vegetable growth. Therefore, integrated phytoremediation is a promising solution to overcome the disadvantages of conventional phytoremediation. It should be taken commercialization and need more applied projects in this field to demonstrate and clarify the real potential of this technology. In view of above, this manuscript reviews the mechanism and the efficiency of integrated phytoremediation for heavy metals in contaminated soil to give an overview of this technology. 


Sign in / Sign up

Export Citation Format

Share Document