scholarly journals Optimal-Setpoint-Based Control Strategy of a Wastewater Treatment Process

Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1203
Author(s):  
Sergiu Caraman ◽  
Laurentiu Luca ◽  
Iulian Vasiliev ◽  
Marian Barbu

This paper presents an optimal-setpoint-based control strategy of a wastewater treatment process (WWTP). The treatment plant serves the city of Galati, located in Eastern Romania, a city with a population of 250,000 inhabitants. As the treatment plant includes several control loops (based upon PI controllers), an efficient operation means the establishing of an optimal operating point regardless of the pluviometric regime (DRY, RAIN and STORM) or transitions between regimes. This optimal operating point is given by the optimal setpoint set (setpoints of the dissolved oxygen concentration in the aerated tanks, setpoint of the nitrate concentration, external recirculation flow, sludge flow extracted from the primary clarifier and excess sludge flow from the secondary clarifier) of the treatment plant control loops. The control algorithm has two distinct parts: the first part consists of computing the optimal aforementioned setpoints, based on the mathematical model of the treatment plant developed in SIMBA. For optimization (performed with genetic algorithms) an aggregate performance criterion that takes into consideration the quality of the effluent, the cost of the wastewater treatment as well as the percentage exceeding of the main parameters of the treated water was used; the second part consists of computing the optimal setpoint set which will be further applied directly in the process based on the membership to the current operating regime. The computation of the membership degrees to the current operating regime was performed with a fuzzification block, based on the information about the inflow rate in the biological treatment plant. For simulations, three data files of the influent were created, aiming at determining the optimal setpoints in each operating regime, and a fourth one containing an influent scenario able to globally test the system operation. The obtained results showed the efficiency of the biological treatment, the effluent quality index being about ten times lower than that of the influent. Furthermore, the genetic algorithm used in optimization determines accurately enough the minimum value of the performance criterion in the case of each pluviometric regime, the lowest value of the performance criterion being obtained in DRY operating regime and the highest values in RAIN and STORM regimes. This is mainly due to the increase of the treatment cost and to small exceeding of the limits of several quality parameters such as chemical oxygen demand and ammonium concentration in the two regimes mentioned above. The fuzzification block aims to achieve a smooth transition from one operating regime to another, thus determining easier operating regimes of the treatment plant actuators and contributing to the increase of their life cycle.

2001 ◽  
Vol 43 (2) ◽  
pp. 91-99 ◽  
Author(s):  
T. Iwane ◽  
T. Urase ◽  
K. Yamamoto

Escherichia coli and coliform group bacteria resistant to seven antibiotics were investigated in the Tama River, a typical urbanized river in Tokyo, Japan, and at a wastewater treatment plant located on the river. The percentages of antibiotic resistance in the wastewater effluent were, in most cases, higher than the percentages in the river water, which were observed increasing downstream. Since the possible increase in the percentages in the river was associated with treated wastewater discharges, it was concluded that the river, which is contaminated by treated wastewater with many kinds of pollutants, is also contaminated with antibiotic resistant coliform group bacteria and E.coli. The percentages of resistant bacteria in the wastewater treatment plant were mostly observed decreasing during the treatment process. It was also demonstrated that the percentages of resistance in raw sewage are significantly higher than those in the river water and that the wastewater treatment process investigated in this study works against most of resistant bacteria in sewage.


2019 ◽  
Vol 252 ◽  
pp. 05010
Author(s):  
Paweł Król ◽  
Alberto Gallina ◽  
Michał Lubieniecki ◽  
Tadeusz Uhl ◽  
Tadeusz Żaba

Waste management is a crucial process to keep the environment in wholesome conditions. The environmental impact of solid waste and wastewater is reduced through construction of appropriate disposal installations. The objective of wastewater treatment in biological reactors is to control the process of biomaterial growth by aerating the sewage content. The process is complex, as depending on a plenty of parameters. In the last decades an effective numerical model, called the Activated Sludge Model (ASM), has been proposed for describing the biological process. The ASM is implemented in the Benchmark Simulation Model (BSM) that simulates the whole wastewater treatment process. The most important parameters in ASM are the kinetic and stoichiometric coefficients. The former describes rate-concentration dependence. The latter characterises the relationship between the components of chemical reactions taking place in the cleaning process. Above parameters are determined by on-site calibration and their importance is relevant during the development of numeric models. This paper aims to examine the influence of kinetic and stoichiometric parameters on the wastewater treatment process of a plant in Płaszów, Kraków. The analysis is carried out by a sample-based numerical procedure. It highlights the ASM parameters playing a major role in the treatment process. Results obtained from the analysis are important for future validation and optimisation processes.


2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Benxin Yu ◽  
Dongping Liu ◽  
Jian Wang ◽  
Yingxue Sun

Abstract Background Most particulate organic matter (POM) cannot be directly degraded in the conventional wastewater treatment, which should be transformed into dissolved organic matter (DOM) through a hydrolysis process. However, non-hydrolyzed POM in the biological treatment can limit treated efficiencies for the wastewater treatment plants (WWTPs) facilities. Hence an operational tool is indispensable for insight into removals of DOM and POM factions in the WWTP. In this study, excitation-emission matrix fluorescence spectroscopy (EEM) combined parallel factor analysis (PARAFAC), two-dimensional correlation (2D-COS) and structural equation modeling (SEM) was employed to evaluate removals of DOM and POM in a wastewater treatment plant. Results Four fluorescence components were identified in DOM and POM substances from the WWTP by EEM combined with PARAFAC, i.e., tyrosine-like (TYLF), tryptophan-like (TRLF), microbial byproduct-like (MBLF), and fulvic acid-like (FALF). In A2/O process, the TYLF and TRLF of DOM were removed to a larger extent than those of MBLF and FALF in anaerobic tank, while TYLF and MBLF of POM were removed to a great extent than those of TRLF and FALF in primary sedimentation and aerobic tanks. By the 2D-COS, a decreasing variation order of DOM fractions in the wastewater treatment process was UV-FALF → MBLF2 → Vis-FALF → TRLF → TYLF, while the decreasing order of POM fractions was Vis-FALF → UV-FALF → MBLF2 → TYLF → MBLF1 → TRLF. SEM revealed that TRLF and TYLF of DOM were degraded by anaerobic microorganism, and TRLF could be transformed partially into FALF. However, TRFL and TYLF of POM were discomposed by aerobic microorganism. Conclusions The 2D-COS and SEM can be practicable tools as EEM-PARAFAC for monitoring DOM and POM in the WWTP. The study could present a theoretical support to improving the retrofit of WWTP and formulating emission standards for organic pollutants.


2001 ◽  
Vol 44 (9) ◽  
pp. 189-196 ◽  
Author(s):  
P. Hardy ◽  
J.E. Burgess ◽  
S. Morton ◽  
R.M. Stuetz

Lab-scale tests were used to determine the amount of H2S that can be treated using a range of different activated sludges. Static vessels were used to study the effects of different H2S concentrations (5, 25, 50 and 75 ppm). The data indicated that odour control may be carried out using certain types of sludge, but sludge type, e.g. carbonaceous, nitrifying, with or without coagulant, affects removal efficiency. The presence of the biomass resulted in greater H2S removal than the use of wet scrubbing and the adverse effects on mixed liquor were negligible. A pilot plant was used to study the removal efficiencies of activated sludge diffusion using a typical wastewater treatment plant H2S concentration and investigated the effects that the diffusion of H2S had on the process performance. Results indicated that the levels of H2S produced by other unit processes on a wastewater treatment site (approximately 5 ppm) can be treated using activated sludge diffusion without compromising the performance of the wastewater treatment process. The only effects on the activated sludge plant observed were: (1) nitrification was interrupted briefly as H2S diffusion commenced and (2) the species' diversity in the sludge decreased.


2012 ◽  
Vol 178-181 ◽  
pp. 599-602
Author(s):  
Shu Xin Du ◽  
Yuan Qing Wu ◽  
Zhi Bao Yuan

In the wastewater treatment process, it is necessary to detect the concentrations of organic matter in order to monitor the operation and adjust the process parameters. Based on fluorescence excitation-emission matrix spectrometry, Chemical oxygen demand (COD) of effluent wastewater in the primary sedimentation tank, the secondary sedimentation tank and the final sedimentation tank of Hengdian Wastewater Treatment Plant, Zhejiang Province, is detected respectively based on fluorescence excitation-emission matrix spectrometry. In order to compare the modeling performance, principal component regression (PCR), partial least squares (PLS), parallel factor analysis (PARAFAC) and multi-way partial least squares (N-PLS) are respectively used to build the calibration models between the fluorescence spectrometry and COD. Experimental results show PLS is better than PARAFAC and N-PLS in the aspect of modeling performance for detecting COD in the wastewater.


2021 ◽  
Vol 5 (1) ◽  
pp. 025-031
Author(s):  
Masoomi Seyyed Roohollah ◽  
Azizi Mostafa ◽  
Aghlmand Reza ◽  
Gheibi Mohammad ◽  
Kian Zahra

Naturally, microorganisms decompose the organic material existing in nature, both in the presence or absence of oxygen. The majority of materials such as poisonous chemical compounds, heavy metals, would prevent the treatment process from taking place, lead to the entry of these contaminants into the environment results in the emergence of numerous diseases. In the present study, using the TOXChem4.1 simulation model, attempts were made to simulate a wastewater treatment plant and then assess the dispersions of contaminants including 1,2-Dimethylnaphthalene, 1,3-Dinitropyrene, 1,6-Dimethylnaphthalene, 1,6-Dinitropyrene, and 17a-ethinylestradiol (EE2) in concentrations of a common scenario. The results of computer simulations showed that the EE2 contaminant is of the highest percentage of decomposition among others, due to its wider chemical structure. Consequently, it is clear that such contaminant is of the highest mass in the sludge exiting the treatment plant. In addition, the results of the simulations demonstrated that the highest volumes of gaseous pollutants take place in the modulation and initial sedimentation units.


Author(s):  
Costel-Cătălin Prăjanu ◽  
Daniel Toma ◽  
Cristina-Mihaela Vîrlan ◽  
Nicolae Marcoie

Abstract This paper includes an analysis of the biological treatment process existing within the water supply and sewerage of Iași City. The main objective of biological treatment is the removal of solid organic substances from wastewater, the stabilization of sludge, the reduction of nutrients loads etc. The Iași City Wastewater Treatment Plant was developed in several stages since year 1968. Nowadays, the facility operates at a design flow rate of 4 m3/s during dry weather and 8 m3/s during heavy rainfalls. This study is focused on the following aspects: wastewater treatment plant’s diagram, the wastewater parameters inside the treatment plant, the biological treatment process analysis and a few conclusions.


2014 ◽  
Vol 955-959 ◽  
pp. 1437-1442
Author(s):  
Hai Bo Yu ◽  
Yu Zhao Feng ◽  
Wei Peng ◽  
Li Wei Sheng ◽  
Hong Lu Li ◽  
...  

Sequencing Batch Reactor (SBR) wastewater treatment process has lots of characteristics, such as randomness, time-varying characteristics, complexity and so on. In order to solve the above problems, a predictive PID control method based on DMC and ordinary PID for SBR wastewater treatment process dissolved oxygen (DO) control was proposed. The simulation studies were conducted with the MATLAB in a sewage treatment plant. The results showed that the proposed predictive PID control method was robust and jamproof. Meanwhile, the wastewater treatment system also had a strong capacity of shock load.


2016 ◽  
Vol 14 (4) ◽  
pp. 692-698 ◽  
Author(s):  
Xiaohui Bai ◽  
Chuanwu Xi ◽  
Jianfeng Wu

Contaminated water may play a key role in the transmission of Helicobacter pylori, resulting in gastrointestinal diseases in humans. The wastewater treatment process is an important barrier to control the transmission of H. pylori. However, the presence and viability of H. pylori in the treatment process is not well known. In this paper, the real colony morphology of H. pylori was confirmed by two types of culture media. The survival of H. pylori through the tertiary wastewater treatment process, especially UV disinfection, and in the receiving Huron River in Ann Arbor, Michigan, was investigated by plates cultivation, regular polymerase chain reaction (PCR) assays and quantitative real-time PCR from DNA. The results demonstrated that H. pylori was not only present, but also viable in all processed wastewater samples in the Ann Arbor wastewater treatment plant (WWTP). H. pylori can be found in a higher concentration in the receiving Huron River. There are many kinds of antibiotic- and UV-resistant bacteria, including H. pylori, in the final effluent of Ann Arbor WWTP.


Sign in / Sign up

Export Citation Format

Share Document