scholarly journals Hydroxypropyl Methylcellulose-Based Hydrogel Copolymeric for Controlled Delivery of Galantamine Hydrobromide in Dementia

Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1350
Author(s):  
Sidra Bashir ◽  
Nadiah Zafar ◽  
Noureddine Lebaz ◽  
Asif Mahmood ◽  
Abdelhamid Elaissari

The study aims to prepare a smart copolymeric for controlled delivery of Galantamine hydrobromide. The synthesis of the hydrogel was executed through free radical polymerization using HPMC (Hydroxypropyl methylcellulose) and pectin as polymers and acrylic acid as monomer. Cross-linking was performed by methylene bisacrylamide (MBA). HPMC-pectin-co-acrylic acid hydrogel was loaded with Galantamine hydrobromide (antidementia drug) as a model drug for treatment of Alzheimer based dementia. Formulated hydrogels (SN1–SN9) were characterized for Fourier transform-infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction, and energy dispersive X-ray. Drug loading efficiency, gel fraction, measurements of porosity, and tensile strength were reported. Swelling and release studies were performed at pH 1.2 and 7.4. Drug liberation mechanism was evaluated by applying different release kinetic models. Galantamine hydrobromide was released from prepared hydrogels by Fickian release mechanism. Swelling, gel fraction, porosity, and drug release percentages were found to be dependent on hydroxypropyl methylcellulose, pectin, acrylic acid, and methylene bisacrylamide concentrations. By increasing HPMC amount, swelling was increased from 76.7% to 95.9%. Toxicity studies were conducted on albino male rabbits for a period of 14 days. Hematological and histopathological studies were carried out to evaluate safety level of hydrogel. Successfully prepared HPMC-pectin-co-acrylic acid hydrogel showed good swelling and release kinetics, which may help greatly in providing controlled release drug effect leading to enhanced patient compliance for dementia patients.

2021 ◽  
Vol 14 (4) ◽  
pp. 350
Author(s):  
Muhammad Suhail ◽  
Chih-Wun Fang ◽  
Muhammad Usman Minhas ◽  
Pao-Chu Wu

The objective of the current study work was to fabricate sodium poly(styrene sulfonate-co-poly acrylic acid) (SPSPAA) hydrogels by using a free radical co-polymerization method for controlled delivery of ketorolac tromethamine (KT). Polymer (sodium poly(styrene sulfonate) (SPS) polymerized with monomer acrylic acid (AA) in the presence of initiator ammonium peroxodisulfate (APS) and cross-linker N′,N′-Methylene bisacrylamide (MBA). Different combinations of polymer, cross-linker and monomer, were employed for development of polymeric hydrogels. Various studies such as sol-gel, drug loading, dynamic swelling, and drug release studies were carried out to know the sol and gel portion of SPSPAA, swelling behavior of hydrogels at different pH media (1.2 and 7.4), quantification of drug loaded by fabricated hydrogels, and amount release of KT at pH 1.2 and 7.4. Higher dynamic swelling was found at pH 7.4 compared to pH 1.2, and as a result, greater percent release of drug was perceived at pH 7.4. Thermal stability, crystallinity, confirmation of functional groups and development of a new polymeric system, and surface morphology were evaluated via Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Powder X-ray Diffraction (PXRD), Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) respectively. The results showed that the present work could be used as a potential candidate for controlled delivery of KT.


2015 ◽  
Vol 51 (2) ◽  
pp. 255-263
Author(s):  
Rupali Nanasaheb Kadam ◽  
Raosaheb Sopanrao Shendge ◽  
Vishal Vijay Pande

<p>The use of nanotechnology based on the development and fabrication of nanostructures is one approach that has been employed to overcome the challenges involved with conventional drug delivery systems. Formulating Nanoplex is the new trend in nanotechnology. A nanoplex is a complex formed by a drug nanoparticle with an oppositely charged polyelectrolyte. Both cationic and anionic drugs form complexes with oppositely charged polyelectrolytes. Compared with other nanostructures, the yield of Nanoplex is greater and the complexation efficiency is better. Nanoplex are also easier to prepare. Nanoplex formulation is characterized through the production yield, complexation efficiency, drug loading, particle size and zeta potential using scanning electron microscopy, differential scanning calorimetry, X-ray diffraction and dialysis studies. Nanoplex have wide-ranging applications in different fields such as cancer therapy, gene drug delivery, drug delivery to the brain and protein and peptide drug delivery.</p>


Gels ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 110
Author(s):  
Muhammad Suhail ◽  
Chih-Wun Fang ◽  
Arshad Khan ◽  
Muhammad Usman Minhas ◽  
Pao-Chu Wu

The purpose of the current investigation was to develop chondroitin sulfate/carbopol-co-poly(acrylic acid) (CS/CBP-co-PAA) hydrogels for controlled delivery of diclofenac sodium (DS). Different concentrations of polymers chondroitin sulfate (CS), carbopol 934 (CBP), and monomer acrylic acid (AA) were cross-linked by ethylene glycol dimethylacrylate (EGDMA) in the presence of ammonium peroxodisulfate (APS) (initiator). The fabricated hydrogels were characterized for further experiments. Characterizations such as Scanning electron microscopy (SEM), Thermogravimetric analysis (TGA), Differential scanning calorimetry (DSC), Powder X-ray diffractometry (PXRD), and Fourier transform infrared spectroscopy (FTIR) were conducted to understand the surface morphology, thermodynamic stability, crystallinity of the drug, ingredients, and developed hydrogels. The swelling and drug release studies were conducted at two different pH mediums (pH 1.2 and 7.4), and pH-dependent swelling and drug release was shown due to the presence of functional groups of both polymers and monomers; hence, greater swelling and drug release was observed at the higher pH (pH 7.4). The percent drug release of the developed system and commercially available product cataflam was compared and high controlled release of the drug from the developed system was observed at both low and high pH. The mechanism of drug release from the hydrogels followed Korsmeyer–Peppas model. Conclusively, the current research work demonstrated that the prepared hydrogel could be considered as a suitable candidate for controlled delivery of diclofenac sodium.


2018 ◽  
Vol 6 (11) ◽  
pp. 61-80 ◽  
Author(s):  
Shashank Soni ◽  
Veerma Ram ◽  
Anurag Verma

In the present experimental investigation an attempt has been made to assess the utility of Crushed Puffed Rice (CPR)-High Molecular Weight Chitosan (HMWCH)-Hydroxypropyl Methylcellulose K15M (HPMC K15M) as a polymeric carrier for the sustained stomach delivery of Piroxicam (PRX). A total of nine formulations were prepared by using 3 (2) Taguchi factorial design, physically blending drug and polymer(s) followed by encapsulation into hard gelatin capsules size 1. The prepared capsules were evaluated for various performance such as weight variation, drug contents, in vitro buoyancy and drug release in 0.1 M HCl. The effect of drug loading on in vitro performance of the formulations was also determined. Crushed puffed rice (CPR) remained buoyant for up to average time span of 06 hr as an unwetted irregular mass in 0.1 M HCl. However, when combined with HMWCH or HPMC K15M or HPMC K15M + HMWCH a low -density cylindrical raft type hydrogel was formed which remained buoyant for up to 12 hr and released up to 99% drug in a sustained manner from 8 to 12 hr following zero order release kinetics. It was also observed that drug release from drug + CPR matrices followed Fickian mechanism. Combination of CPR + HMWCH or HMWCH + HPMC K15M also follows Fickian mechanism. Obtained data from the research work suggests that CPR in combination with HMWCH or HPMC K15M or HPMC has sufficient potential to be used as a carrier for stomach specific delivery of gastric irritant drug like PRX.Soni et al., International Current Pharmaceutical Journal, April 2018, 6(11): 61-80http://www.icpjonline.com/documents/Vol6Issue11/01.pdf


2014 ◽  
Vol 12 (2) ◽  
pp. 131-141 ◽  
Author(s):  
Ikramul Hasan ◽  
Shovan Paul ◽  
Sharmin Akhter ◽  
Navid Jubaer Ayon ◽  
Md Selim Reza

Metformin HCl microspheres were prepared with the aim of increasing its bioavailability and decreasing gastrointestinal side effects by means of sustained action. Eudragit RSPO and Eudragit RLPO, polymers of different permeability characteristics were used to prepare different microspheres. Emulsification solvent evaporation technique using acetone as the internal phase and liquid paraffin as the external phase was the method of choice. Six formulations were prepared using two polymers. The effect of drug loading and polymeric property on the surface morphology, entrapment efficiency, particle size and release characteristics of the microspheres were examined. FTIR and DSC studies established compatibility of the drug with the polymers. SEM studies clearly revealed the effect of drug loading and polymeric nature on the surface morphology of the microspheres. Entrapment efficiencies were within 77.09-97.11% and particle size of all the batches were in the acceptable range. Release data were treated with different mathematical kinetic models. The drug release profile showed that Eudragit RSPO and Eudragit RLPO have opposite effect on drug release. On the other hand, increase in drug loading results in increased drug release. Kinetic modeling of in vitro dissolution profiles revealed that the drug release mechanism varies from diffusion controlled to anomalous type. Dhaka Univ. J. Pharm. Sci. 12(2): 131-141, 2013 (December) DOI: http://dx.doi.org/10.3329/dujps.v12i2.17611


2019 ◽  
pp. 089270571987919
Author(s):  
Volodymyr Krasinskyi ◽  
Ivan Gajdos ◽  
Oleh Suberlyak ◽  
Viktoria Antoniuk ◽  
Tomasz Jachowicz

The structure and thermal characteristics of nanocomposites based on polyvinyl alcohol (PVA) and montmorillonite (MMT) intercalated with polyvinylpyrrolidone were investigated by X-ray diffraction analysis and differential scanning calorimetry. The modification of PVA with intercalated MMT reduces the degree of crystallinity of the resulting nanocomposites but significantly increases their thermal stability. Under ultrasound, the intercalated MMT was completely distributed in a PVA solution and formed a monocrystalline structure. Films based on PVA with modified MMT were cross-linked at 110°C in the presence of 5 wt% acrylic acid and 0.5 wt% Ferrous(II) sulfate as an initiator. The formed films have a homogeneous cross-linked structure.


Author(s):  
Jasvanth E ◽  
Teja D ◽  
Mounika B ◽  
Buchi N Nalluri

Objective: The present investigation was aimed at preparation and evaluation of mouth dissolving films (MDFs) of Ramipril to enhance patient convenience, compliance and to improve bioavailability. Methods: MDFs with 0.5% w/w Ramipril were prepared by a solvent casting method using a wet film applicator. The effects of film formers, wetting/solubilizing, saliva stimulating agents and film modifiers on the physicomechanical and in vitro Ramipril release from MDFs were evaluated. Results: The MDFs prepared were transparent, smooth and showed no re-crystallization upon storage. MDFs casted with hydroxypropyl methylcellulose (HPMC) E3 as film former and polyethylene glycol (PEG-400) as plasticizer showed superior Ramipril release rates and good physicomechanical properties when compared to MDFs with E5 and E15 as film formers. HPMC E3 MDFs with polyvinyl pyrrolidone K30 (PVP K30) and sodium lauryl sulphate (SLS) gave superior drug release properties than MDFs without PVP K30 and SLS. The HPMC E3 MDFs with citric acid (CA) as saliva stimulating and xylitol as soothing agent gave significantly superior in vitro drug release than the MDFs without CA and xylitol. Release kinetics data reveals diffusion as a drug release mechanism. Conclusion: From the obtained results, it can be concluded that the administration of Ramipril as MDF may provide a quick onset of action with enhanced oral bioavailability and therapeutic efficacy.


2015 ◽  
Vol 28 (2) ◽  
pp. 136-142 ◽  
Author(s):  
Anna Lisik ◽  
Dorota Wojcik-Pastuszka ◽  
Maria Twarda ◽  
Ryszard Berkowski ◽  
Witold Musial

Abstract The aim of the study was to evaluate, in comparison to the reference product, the effect of the hydrophilic nonionic polymers: methylcellulose (MC) and hydroxypropyl methylcellulose (HPMC), as well as the anionic polymers - copolymers of acrylic acid, on the release kinetics of a calcium dobesilate hydrogel formulation intended for application on the skin. In this work, we used an ointment cell for the release of the active pharmaceutical ingredient (API) from the formulations. This release was performed by employing the paddle method at 100 rpm, with the extraction cells placed in the release vessels in two different positions: with the semipermeable membrane faced to the top, or to the bottom of the vessel. Released API percentage was assessed via the validated spectrophotometric method. In the study with standard placement of the ointment cell, the release rates ranged from 4.45×10-3 min-1 for a formulation containing polyacrylic acid (PA), to 6.96 × 10-3 min-1 for a formulation based on HPMC. In the group of nonionic polymers, the release rate is higher in the case of HPMC, and lower in the case of MC. In the group of anionic polymers, the release rate is higher with the formulation of a modified copolymer of acrylic acid 11 (PC11), while release from a formulation comprising a polymer PA is rather prolonged. We found that the placement of the extraction cell does not affect the alignment of the formulations investigated in terms of the release rates in the group of non-ionic formulations: HPMC > MC, and in the group of preparation of ionic polymers: PC11 > PA.


2021 ◽  
Author(s):  
Parvaneh Mohamadinia ◽  
Navideh Anarjan

Abstract Hydrogels are specific groups of polymers that are highly swellable in aqueous solutions, despite their water-in-soluble structures. Thus, they are promising drug delivery systems attributable to their unique characteristics such as high hydrophilicity, high controllability, facile production routines and, good biocompatibility. The aim of this research was the preparation of sodium alginate/acrylic acid composite hydrogels conjugated to silver nanoparticles to deliver the cephalexin as a model antibiotic compound. The reduction of silver ions into silver nanoparticles as well as the stabilization of created nanoparticles ensued simultaneously with hydrogel backbone formulation during microwave irradiation and monomer cross-linking processes. The impact of acrylic acid and silver ions concentrations and also the radiation time of microwave were then investigated on the main characteristics of hydrogels, namely, swelling ratio, gel fraction, cephalexin load and, antibacterial activity. The results indicated that the hydrogels’ characteristics could be significantly predicted by studied all independent parameters, through various second-order polynomial models. The multiple optimization analysis suggested that the prepared hydrogels using 7.8 g acrylic acid and 1.5 g silver nitrate and 1 min microwave radiation could give the best hydrogels with the highest swelling degree, gel fraction, cephalexin absorption and, antibacterial activity. The morphology and either absorption or release kinetics of cephalexin by/from the optimum prepared hydrogels were also investigated. No significant differences between the experimental and predicted data was confirmed the suitability of the suggested models.


Sign in / Sign up

Export Citation Format

Share Document