scholarly journals A Review of Gum Hydrocolloid Polyelectrolyte Complexes (PEC) for Biomedical Applications: Their Properties and Drug Delivery Studies

Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1796
Author(s):  
Jindrayani Nyoo Putro ◽  
Valentino Bervia Lunardi ◽  
Felycia Edi Soetaredjo ◽  
Maria Yuliana ◽  
Shella Permatasari Santoso ◽  
...  

The utilization of natural gum polysaccharides as the vehicle for drug delivery systems and other biomedical applications has increased in recent decades. Their biocompatibility, biodegradability, and price are much cheaper than other materials. It is also renewable and available in massive amounts, which are the main reasons for its use in pharmaceutical applications. Gum can be easily functionalized with other natural polymers to enhance their applications. Various aspects of the utilization of natural gums in the forms of polyelectrolyte complexes (PECs) for drug delivery systems are discussed in this review. The application of different mathematical models were used to represent the drug release mechanisms from PECs; these models include a zero-order equation, first-order equation, Higuchi, simplified Higuchi, Korsmeyer–Peppas, and Peppas–Sahlin.

2021 ◽  
Vol 9 (5) ◽  
pp. 334-345
Author(s):  
N. Surya ◽  
S. Bhattacharyya

Polymers have become an integral part of novel drug delivery system. One such successful biodegradable polymer is poly lactic-co-glycolic acid (PLGA) which consists of polyesters of lactic acid and glycolic acid. It is one of the FDA-approved biodegradable polymers which is extensively used for therapeutic purposes in recent times.The aim. To illuminate researchers on the chemistry, novel properties and applications of PLGA in pharmaceutical fields.Materials and methods. Various internet sources like Science Direct, Scopus, Web of Science, PubMed and google scholar were used as the data source. The key words search was carried out for the following words and combinations: PLGA, Novel drug delivery, PLGA Nano particles, biomedical applications of PLGA.Results. Pharmaceutical and biomedical industries are flooded with the use of synthetic and natural polymers. The mechanical and viscoelastic properties of the polymers make them suitable for the temporal and spatial delivery of therapeutic agents for an extended period. Employment of copolymerization techniques lead to the modification of water solubility of the polymers and make them suitable for various applications of drug delivery systems. Biodegradable polymers due to their biocompatibility and biodegradable property have attracted their use in novel drug delivery systems. PLGA is one of them. PLGA is versatile as it can be fabricated into any size, shape, and can be used to encapsulate small molecules, tissue engineering, and bone repair, etc.Conclusion. The sensitivity and biodegradability of PLGA makes it a smart polymer for targeted and sustained delivery of drugs and in various biomedical applications.


2020 ◽  
Vol 21 ◽  
Author(s):  
Dickson Pius Wande ◽  
Qin Cui ◽  
Shijie Chen ◽  
Cheng Xu ◽  
Hui Xiong ◽  
...  

: As a unique and pleiotropic polymer, d-alpha-tocopheryl polyethylene glycol succinate (Tocophersolan) is a polymeric synthetic version of vitamin E. Tocophersolan has attracted enormous attention as a versatile excipient in different biomedical applications including drug delivery systems and nutraceuticals. The multiple inherent properties of Tocophersolan make it play flexible roles in drug delivery system design, including excipients with outstanding biocompatibility, solubilizer with the ability of promoting drug dissolution, drug permeation enhancer, P-glycoprotein inhibitor and anticancer compound. For these reasons, Tocophersolan has been widely used for improving the bioavailability of numerous pharmaceutical active ingredients. Tocophersolan has been approved by stringent regulatory authorities (such as US FDA, EMA, and PMDA) as a safe pharmaceutical excipient. In this review, we systematically curated current advances in nano-based delivery systems consisting of Tocophersolan with possibilities for futuristic applications in drug delivery, gene therapy, and nanotheranostic.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1845
Author(s):  
Narcis Anghel ◽  
Valentina Maria Dinu ◽  
Liliana Verestiuc ◽  
Irene Alexandra Spiridon

Designing composites based on natural polymers has attracted attention for more than a decade due to the possibility to manufacture medical devices which are biocompatible with the human body. Herein, we present some biomaterials made up of collagen, polyurethane, and cellulose doped with lignin and lignin-metal complex, which served as transcutaneous drug delivery systems. Compared with base material, the compressive strength and the elastic modulus of biocomposites comprising lignin or lignin-metal complex were significantly enhanced; thus, the compressive strength increased from 61.37 to 186.5 kPa, while the elastic modulus increased from 0.828 to 1.928 MPa. The release of ketokonazole from the polymer matrix follows a Korsmeyer–Peppas type kinetics with a Fickian diffusion. All materials tested were shown to be active against pathogenic microorganisms. The mucoadhesiveness, bioadhesiveness, mechanical resistance, release kinetic, and antimicrobial activity make these biocomposites to be candidates as potential systems for controlled drug release.


2018 ◽  
Vol 6 (4) ◽  
pp. 877-884 ◽  
Author(s):  
Po Li ◽  
Yue Yan ◽  
Binlong Chen ◽  
Pan Zhang ◽  
Siling Wang ◽  
...  

In recent years, multifunctional nanoparticles have attracted much research interest in various biomedical applications such as biosensors, diagnosis, and drug delivery systems.


Author(s):  
Natallia V. Dubashynskaya ◽  
Sergei V. Raik ◽  
Yaroslav A. Dubrovskii ◽  
Elena S. Shcherbakova ◽  
Elena V. Demyanova ◽  
...  

2019 ◽  
Vol 91 (4) ◽  
pp. 687-706 ◽  
Author(s):  
María Vallet-Regí

Abstract Since the second half of the 20th century, bioceramics are used for bone repair and regeneration. Inspired by bones and teeth, and aimed at mimicking their structure and composition, several artificial bioceramics were developed for biomedical applications. And nowadays, in the 21st century, with the increasing prominence of nanoscience and nanotechnology, certain bioceramics are being used to build smart drug delivery systems, among other applications. This minireview will mainly describe both tendencies through the research work carried out by the research team of María Vallet-Regí.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 495 ◽  
Author(s):  
Hakkarainen ◽  
Kõrkjas ◽  
Laidmäe ◽  
Lust ◽  
Semjonov ◽  
...  

We investigated nozzleless ultrasound-enhanced electrospinning (USES) as means to generate nanofibrous drug delivery systems (DDSs) for pharmaceutical and biomedical applications. Traditional electrospinning (TES) equipped with a conventional spinneret was used as a reference method. High-molecular polyethylene oxide (PEO) and chitosan were used as carrier polymers and theophylline anhydrate as a water-soluble model drug. The nanofibers were electrospun with the diluted mixture (7:3) of aqueous acetic acid (90% v/v) and formic acid solution (90% v/v) (with a total solid content of 3% w/v). The fiber diameter and morphology of the nanofibrous DDSs were modulated by varying ultrasonic parameters in the USES process (i.e., frequency, pulse repetition frequency and cycles per pulse). We found that the USES technology produced nanofibers with higher fiber diameter (402 ± 127 nm) than TES (77 ± 21 nm). An increase of a burst count in USES increased the fiber diameter (555 ± 265 nm) and the variation in fiber size. The slight-to-moderate changes in a solid state (crystallinity) were detected when compared the nanofibers generated by TES and USES. In conclusion, USES provides a promising alternative for aqueous-based fabrication of nanofibrous DDSs for pharmaceutical and biomedical applications.


2020 ◽  
Vol 21 (23) ◽  
pp. 9159
Author(s):  
Yanzhen Sun ◽  
Xiaodong Jing ◽  
Xiaoli Ma ◽  
Yinglong Feng ◽  
Hao Hu

Chemotherapy is still the most direct and effective means of cancer therapy nowadays. The proposal of drug delivery systems (DDSs) has effectively improved many shortcomings of traditional chemotherapy drugs. The technical support of DDSs lies in their excellent material properties. Polysaccharides include a series of natural polymers, such as chitosan, hyaluronic acid, and alginic acid. These polysaccharides have good biocompatibility and degradability, and they are easily chemical modified. Therefore, polysaccharides are ideal candidate materials to construct DDSs, and their clinical application prospects have been favored by researchers. On the basis of versatile types of polysaccharides, this review elaborates their applications from strategic design to cancer therapy. The construction and modification methods of polysaccharide-based DDSs are specifically explained, and the latest research progress of polysaccharide-based DDSs in cancer therapy are also summarized. The purpose of this review is to provide a reference for the design and preparation of polysaccharide-based DDSs with excellent performance.


Sign in / Sign up

Export Citation Format

Share Document