scholarly journals Research on Response Characteristics and Control Strategy of the Supercritical Carbon Dioxide Power Cycle

Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1943
Author(s):  
Chunhui Dai ◽  
Ping Song ◽  
Can Ma ◽  
Kelong Zhang ◽  
Wei Zheng ◽  
...  

With the development of GEN-IV nuclear reactor technology, the supercritical carbon dioxide (SCO2) Brayton cycle has attracted wide attention for its simple structure and high efficiency. Correspondingly, a series of research has been carried out to study the characteristics of the cycle. The control flexibility of the power generation system has rarely been studied. This paper carried out a dynamic performance of the 20 MW-SCO2 recompression cycle based on the Simulink software. In the simulation, the response characteristics of the system main parameters under the disturbances of cooling water temperature, split ratio, main compressor inlet temperature and pressure were analyzed. The results show that the turbine inlet temperature is most affected by the disturbances, with a re-stabilization time of 2500–3000 s. According to the response characteristics of the system after being disturbed, this study proposed a stable operation control scheme. The scheme is coordinated with the main compressor inlet temperature and pressure control, recompressor outlet pressure control, turbine inlet temperature control and turbine load control. Finally, the control strategy is verified with the disturbance of reduced split ratio, and the results show that the control effect is good.

2020 ◽  
Vol 10 (3) ◽  
pp. 1129 ◽  
Author(s):  
Mohammad Saad Salim ◽  
Muhammad Saeed ◽  
Man-Hoe Kim

This paper presents performance analysis results on supercritical carbon dioxide ( s C O 2 ) re-compression Brayton cycle. Monthly exergy destruction analysis was conducted to find the effects of different ambient and water temperatures on the performance of the system. The results reveal that the gas cooler is the major source of exergy destruction in the system. The total exergy destruction has the lowest value of 390.1   kW when the compressor inlet temperature is near the critical point (at 35 °C) and the compressor outlet pressure is comparatively low ( 24   MPa ). The optimum mass fraction (x) and efficiency of the cycle increase with turbine inlet temperature. The highest efficiency of 49% is obtained at the mass fraction of x = 0.74 and turbine inlet temperature of 700 °C. For predicting the cost of the system, the total heat transfer area coefficient ( U A T o t a l ) and size parameter (SP) are used. The U A T o t a l value has the maximum for the split mass fraction of 0.74 corresponding to the maximum value of thermal efficiency. The SP value for the turbine is 0.212 dm at the turbine inlet temperature of 700 °C and it increases with increasing turbine inlet temperature. However the SP values of the main compressor and re-compressor increase with increasing compressor inlet temperature.


Author(s):  
Haoxiang Chen ◽  
Weilin Zhuge ◽  
Yangjun Zhang ◽  
Hongdan Liu

Abstract Supercritical carbon dioxide (S-CO2) Brayton power cycle has attracted a lot of attention around the world in energy conversion field. It takes advantage of the high density of CO2 near the critical point while maintaining low viscosity to reduce compressor power and achieve high cycle efficiency. However, as CO2 approaches to its critical point, the thermodynamic properties of CO2 vary dramatically with small changes in temperature or pressure. As a result, the density of the working fluid varies significantly at the compressor inlet in the practical cycle if operating near the critical point, especially for small-scale cycles and air-cooled cycles, which leads to compressors operating out of the flow range, even being damaged. Concerns of large density variations at the inlet of the compressor result in S-CO2 compressor designers selecting compressor inlet conditions away from the critical point, thereby increasing compressor power. In this paper, a criterion to choose inlet pressure and inlet temperature of compressors as the design inlet condition is proposed, which is guaranteeing ±50% change in inlet specific volume within ±3 °C variation in inlet temperature. By the criterion, 8 MPa and 34.7 °C is selected as the design inlet condition. According to design requirements of the cycle, a S-CO2 centrifugal compressor is designed through 1-D design methodology. Based on the two-zone model, the effects of compressor inlet condition including inlet pressure and inlet temperature on the compressor performance are analyzed in detail. In practical operation, the compressor inlet condition is varied. Thus, an accurate prediction of compressor performance under different inlet conditions is necessary. The traditional correction method is not suitable for S-CO2 compressor. Dimensionless specific enthalpy rise is used to correct pressure ratio by the real gas table. And the S-CO2 compressor performance can be predicted correctly under different inlet conditions.


Author(s):  
Jussi Saari ◽  
Juha Kaikko ◽  
Jari L. H. Backman ◽  
Jaakko Larjola

Microturbines have become popular among small-scale distributed energy systems. This paper focuses on a two-shaft arrangement where high efficiency is obtained through intercooling, reheat and recuperation. An optimized method for controlling the part-load performance via variable speed control of the generator shaft in addition to the turbine inlet temperature reduction is presented. The studied methods to reduce the power output were variable speed control of the generator shaft in combination with independent turbine inlet temperature control of both turbines. Optimization was performed by using a differential evolutionary algorithm to find a sufficient number of points at steadily reducing power settings to determine the optimal control curves for the three control parameters. In the microturbine model the operating values of the engine were obtained by solving the system of nonlinear equations formed by the governing relations. As a result an optimal part-load control method was found which provides better part-load efficiency than any of the studied control methods alone or in simple combinations could have provided. The optimal control strategy and the relative change of part-load electric efficiency were shown to be fairly independent of the design-point specifications for the turbomachinery and recuperator.


1974 ◽  
Author(s):  
V. V. Uvarov ◽  
V. S. Beknev ◽  
E. A. Manushin

There are two different approaches to develop the gas turbines for power. One can get some megawatts by simple cycle or by more complex cycle units. Both units require very different levels of turbine inlet temperature and pressure ratio for the same unit capacity. Both approaches are discussed. These two approaches lead to different size and efficiencies of gas turbine units for power. Some features of the designing problems of such units are discussed.


Author(s):  
James D. Maclay ◽  
Jacob Brouwer ◽  
G. Scott Samuelsen

A dynamic model of a 100 MW solid oxide fuel cell-gas turbine hybrid system has been developed and subjected to perturbations in diurnal ambient temperature and pressure as well as load sheds. The dynamic system responses monitored were the fuel cell electrolyte temperature, gas turbine shaft speed, turbine inlet temperature, and compressor surge. Using a control strategy that primarily focuses on holding fuel cell electrolyte temperature constant and secondarily on maintaining gas turbine shaft speed, safe operation was found to occur for expected ambient pressure variation ranges and for ambient temperature variations up to 28 K when tested nonsimultaneously. When ambient temperature and pressure were varied simultaneously, stable operation was found to occur when the two are in phase but not when the two are out of phase. The latter case leads to shaft overspeed. Compressor surge was found to be more likely when the system is subjected to a load shed initiated at minimum ambient temperature rather than at maximum ambient temperature. Fuel cell electrolyte temperature was found to be well-controlled except in the case of shaft overspeeds. Turbine inlet temperature remained in safe bounds for all cases.


Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1656
Author(s):  
Shunsen Wang ◽  
Bo Li

A power-water cogeneration system based on a supercritical carbon dioxide Brayton cycle (SCBC) and reverse osmosis (RO) unit is proposed and analyzed in this paper to recover the waste heat of a gas turbine. In order to improve the system performance, the power generated by SCBC is used to drive the RO unit and the waste heat of SCBC is used to preheat the feed seawater of the RO unit. In particular, a dual-stage cooler is employed to elevate the preheating temperature as much as possible. The proposed system is simulated and discussed based on the detailed thermodynamic models. According to the results of parametric analysis, the exergy efficiency of SCBC first increases and then decreases as the turbine inlet temperature and split ratio increase. The performance of the RO unit is improved as the preheating temperature rises. Finally, an optimal exergy efficiency of 52.88% can be achieved according to the single-objective optimization results.


Author(s):  
Jim Pasch ◽  
David Stapp

Sandia National Laboratories (SNL) has recently purchased a supercritical carbon dioxide (sCO2) turbocompressor that operates at 118,000 rpm, 750 °C turbine inlet temperature, and 42.9 MPa compressor discharge pressure, and is sized to pressurize the flow for a 1 MWe closed Brayton cycle. The turbocompressor is a line replaceable unit designed by Peregrine Turbine Technologies (PTT) located in Wiscasset, Maine, as part of their closed Brayton electric power genset rated at 1 MWe. Both this machine and a 6MW variant are intended for commercial applications burning a variety of aircombustible fuels including biomass materials. Sandia purchased this turbocompressor as the first phase of a program to construct a 1 MWe commercially viable sCO2 recompression closed Brayton-cycle system. During this phase, the development platform resident at the SNL Brayton Lab was reconfigured to support testing of the PTT turbocompressor to moderate, or idle, conditions. The testing infrastructure at the Brayton Lab limited maximum pressure to 13.8 MPa. This pressure limitation consequently limited turbocompressor operations to a speed of 52,000 rpm and a turbine inlet temperature of 150 °C. While these conditions are far removed from the machine design point, they are sufficient to demonstrate a range of important features. Numerous testing objectives were identified and researched, most notably: the development of a reliable cycle bootstrapping process for a motorless turbocompressor; the demonstration of consistent start, steady state, and shutdown performance and operations; performance demonstration of the numerous internal seals and bearings designs that are new to this environment; demonstration of controllability via turbine back pressuring and turbine inlet temperature; and turbomachinery performance map validation. This paper presents the design and development of the testing platform, the PTT turbocompressor and progress achieved on each of the objectives.


Author(s):  
Ook Joong Kim ◽  
Young-Ho Choi ◽  
Seok Ho Yoon

An experimental study on the flow characteristics of electronic expansion valves (EEVs) for heat pump system using carbon dioxide as a refrigerant have been carried out in this study. Many researches and efforts have been made to replace chemical refrigerants like Chloro-Fluoro-Carbon (CFC) and Hydro-Chloro-Fluoro-Carbon (HCFC) with natural refrigerants such as carbon dioxide and apply natural refrigerants to chillers or heat pump systems. In this study, we focused on the development of EEV and 4-way valve among the important components of heat pump system using natural refrigerant. The mass flow rate was measured at various EEV inlet temperature and pressure conditions with respect to several EEV openings operated at a heat pump system which has about 10 kW of cooling capacity. The heat pump system consists of a reciprocating compressor, a gas cooler, an evaporator, an EEV, and a 4-way valve which was developed for this study. The inlet temperature and pressure of an EEV was varied from 5°C to 40°C and from 7 MPa to 10 MPa, respectively. The mass flow rate of carbon dioxide through the EEV ranged from 50 g/s to 120 g/s. The mass flow rate of carbon dioxide around the critical point was affected by the inlet temperature and pressure of EEV, valve opening, and density variation. An empirical mass flow rate correlation of carbon dioxide based on the Buckingham π-theorem was developed in this study, and this correlation predicted experimental data within an average absolute deviation of 4.2%. The correlation can be applied to predict the mass flow rate through EEV used in the heat pump system using carbon dioxide as a refrigerant. And the reliability test of developed 4-way valve was conducted. This 4-way valve showed stable operation in the high pressure condition.


2020 ◽  
pp. 294-294
Author(s):  
Xiaoping Yang ◽  
Zhuodi Cai

S-CO2 (supercritical carbon dioxide) is used as working fluid for power system cycle. This paper presents thermodynamic performance analysis results on S-CO2 Brayton cycle. Based on the assumptions of the relevant initial parameters, the mathematical models of compressor, turbine, recuperator and heater are constructed, and the thermal efficiency of regenerative Brayton cycle and recompression Brayton cycle are calculated and analyzed. The results reveal that the efficiency of the recompression cycle is higher than that of the simple regenerative cycle. The effects of inlet temperature, inlet pressure of the main compressor and inlet temperature, inlet pressure of the turbine on the thermodynamic performance of the recompression cycle are studied, and the influencing mechanism is explained. The results show that the cycle efficiency decreases with the increase of the inlet temperature of the main compressor; there exists an optimum inlet pressure in the main compressor to maximize the cycle efficiency; and the cycle efficiency of the system increases with the increase of the inlet temperature and pressure of the turbine. When the inlet temperature of the turbine exceeds 600 ?, the thermal efficiency of the cycle can reach more than 50%.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1551
Author(s):  
Jinghang Liu ◽  
Aofang Yu ◽  
Xinxing Lin ◽  
Wen Su ◽  
Shaoduan Ou

In the waste heat recovery of the internal combustion engine (ICE), the transcritical CO2 power cycle still faces the high operation pressure and difficulty in condensation. To overcome these challenges, CO2 is mixed with organic fluids to form zeotropic mixtures. Thus, in this work, five organic fluids, namely R290, R600a, R600, R601a, and R601, are mixed with CO2. Mixture performance in the waste heat recovery of ICE is evaluated, based on two transcritical power cycles, namely the recuperative cycle and split cycle. The results show that the split cycle always has better performance than the recuperative cycle. Under design conditions, CO2/R290(0.3/0.7) has the best performance in the split cycle. The corresponding net work and cycle efficiency are respectively 21.05 kW and 20.44%. Furthermore, effects of key parameters such as turbine inlet temperature, turbine inlet pressure, and split ratio on the cycle performance are studied. With the increase of turbine inlet temperature, the net works of the recuperative cycle and split cycle firstly increase and then decrease. There exist peak values of net work in both cycles. Meanwhile, the net work of the split cycle firstly increases and then decreases with the increase of the split ratio. Thereafter, with the target of maximizing net work, these key parameters are optimized at different mass fractions of CO2. The optimization results show that CO2/R600 obtains the highest net work of 27.43 kW at the CO2 mass fraction 0.9 in the split cycle.


Sign in / Sign up

Export Citation Format

Share Document