scholarly journals A New Measurement System for Performance Analysis in Flatwater Sprint Kayaking

Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 39
Author(s):  
Vincenzo Bonaiuto ◽  
Giorgio Gatta ◽  
Cristian Romagnoli ◽  
Paolo Boatto ◽  
Nunzio Lanotte ◽  
...  

The full comprehension of the impact with which each force is involved in kayak propulsion is very difficult. The measure of the force on the paddle or the stroke rate only is often not enough for the coach to identify the best actions useful to improve the performances of a kayaker. To this purpose, the synchronous measurement of all parameters involved in the kayak propulsion, both dynamic (force acting on paddle and foot brace) and kinematic (stroke frequency, displacement, velocity, acceleration, roll, yaw, and pitch of the boat) could suggest to the coach more appropriate strategies for better understanding of the paddler’s motion and the relevant effects on the kayak behavior. Some simulation models, as well as measurement systems of increasing complexity, have been proposed in the recent years. In this paper, we present the e-Kayak system: A multichannel Digital Acquisition (DAQ) system specifically customized for flatwater kayaking. The system will be described in depth and its capability investigated through specific measurement results.

Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 542 ◽  
Author(s):  
Vincenzo Bonaiuto ◽  
Giorgio Gatta ◽  
Cristian Romagnoli ◽  
Paolo Boatto ◽  
Nunzio Lanotte ◽  
...  

Nowadays, in modern elite sport, the identification of the best training strategies which are useful in obtaining improvements during competitions requires an accurate measure of the physiologic and biomechanical parameters that affect performance. The goal of this pilot study was to investigate the capabilities of the e-Kayak system, a multichannel digital acquisition system specifically tailored for flatwater sprint kayaking application. e-Kayak allows the synchronous measure of all the parameters involved in kayak propulsion, both dynamic (including forces acting on the paddle and footrest) and kinematic (including stroke frequency, displacement, velocity, acceleration, roll, yaw, and pitch of the boat). After a detailed description of the system, we investigate its capability in supporting coaches to evaluate the performance of elite athletes’ trough-specific measurements. This approach allows for a better understanding of the paddler’s motion and the relevant effects on kayak behavior. The system allows the coach to carry out a wide study of kayak propulsion highlighting, and, at the same time, the occurrences of specific technical flaws in the paddling technique. In order to evaluate the correctness of the measurement results acquired in this pilot study, these results were compared with others which are available in the literature and which were obtained from subjects with similar characteristics.


2010 ◽  
Vol 38 (2) ◽  
pp. 155-180 ◽  
Author(s):  
Thomas Hüsemann ◽  
Mark Wöhrmann

Abstract Computer aided engineering tools play an important role in today’s vehicle development process. Today, overall vehicle dynamics analysis and chassis component fatigue resistance investigations can be carried out without the need for existing prototype hardware versions of the corresponding vehicle. An accurate tire model is a key element in precise modeling of the vehicle and its components. All forces acting on the vehicle (except for aerodynamic forces) are transferred via the tires. Therefore, the tire and its modeled characteristics have a major influence on the results of vehicle dynamics analysis. At present, many tire simulation models are available for application in vehicle dynamics analysis. To obtain the best possible performance from these models, a number of different tire measurements are required to support the tire model parameter identification process. This paper presents a review of different tire simulation models and their required tire measurements. Depending on the test rigs used and the measurement procedures applied, the tire measurement results may be somewhat different. What is the impact of these differences on the tire modeling performance and the vehicle dynamics analysis output? This paper gives an answer.


Author(s):  
Joshua Muñoz ◽  
Mehdi Ahmadian ◽  
Michael Craft

This study presents track alignment and curvature measurement results from a Doppler LIDAR (light detection and ranging) speed measurement system, a non-contact speed and distance measurement system comparable to encoders found on research geometry cars. The system has multiple mounting capabilities with the primary implementations being body-mounted and truck-mounted. Track speed is measured using the individual rails as reference targets, producing two speed signals. Curvature data is obtained from the measured speed differential as the train navigates tangent and curved track. The different dynamic behaviors of the truck and car body influence the motion of the LIDAR system, and thus the results vary depending on the mounting configuration. The curvature, speed, and distance data obtained from the LIDAR system has been compared with results from a geometry car and manual track measurements. The results indicate the LIDAR system has strong potential in serving as a highly precise, non-contact speed, distance, and curvature measurement device suitable for implementation in rail geometry applications.


Author(s):  
Kimberly D. Eilert ◽  
Kaladhar Radhakrishnan ◽  
Michael J. Hill ◽  
Kemal Aygu¨n

We show system modeling and measurement results of a platform with array capacitor solution (ACS) within the frequency domain. A Pentium® 4 microprocessor package was redesigned for a single array capacitor, in place of all multiterminal capacitors. Its system power delivery impedance profile was found to have a more desirable high frequency response than the earlier system designed with discrete multiterminal capacitors. These measured results were also found to agree well with the behavior predicted by simulation models. Additionally we explore the impact and optimization of array capacitor parameters on the overall system frequency response.


2018 ◽  
Vol 51 (9-10) ◽  
pp. 443-452 ◽  
Author(s):  
Agnieszka Malesińska ◽  
Mariusz Rogulski ◽  
Pierfabrizio Puntorieri ◽  
Giuseppe Barbaro ◽  
Beata Kowalska

Background: When transporting liquids, in particularly over long distances, dynamic forces in the system can present a risk. The larger the system size, and the greater the pressure, the more harmful the impact is of such forces. Water is transported in this way for domestic, industrial, and fire-fighting purposes. One of the impulses of dynamic force application may be the transition of the pressure wave in the water hammer. Methods: In this paper, the results of measured dynamic forces and associated displacements recorded on the model caused by transient flow conditions are presented. For measured forces, the displacements of the pipe were also calculated by using the oscillation motion equations. Force measurements and displacement analyses were carried out in laboratory on the model of a simple fire protection system equipped with three nozzles. Results and Conclusions: The measurement results and calculations were used to calibrate a mathematical model created using MATLAB software.


2012 ◽  
Vol 82 (3) ◽  
pp. 216-222 ◽  
Author(s):  
Venkatesh Iyengar ◽  
Ibrahim Elmadfa

The food safety security (FSS) concept is perceived as an early warning system for minimizing food safety (FS) breaches, and it functions in conjunction with existing FS measures. Essentially, the function of FS and FSS measures can be visualized in two parts: (i) the FS preventive measures as actions taken at the stem level, and (ii) the FSS interventions as actions taken at the root level, to enhance the impact of the implemented safety steps. In practice, along with FS, FSS also draws its support from (i) legislative directives and regulatory measures for enforcing verifiable, timely, and effective compliance; (ii) measurement systems in place for sustained quality assurance; and (iii) shared responsibility to ensure cohesion among all the stakeholders namely, policy makers, regulators, food producers, processors and distributors, and consumers. However, the functional framework of FSS differs from that of FS by way of: (i) retooling the vulnerable segments of the preventive features of existing FS measures; (ii) fine-tuning response systems to efficiently preempt the FS breaches; (iii) building a long-term nutrient and toxicant surveillance network based on validated measurement systems functioning in real time; (iv) focusing on crisp, clear, and correct communication that resonates among all the stakeholders; and (v) developing inter-disciplinary human resources to meet ever-increasing FS challenges. Important determinants of FSS include: (i) strengthening international dialogue for refining regulatory reforms and addressing emerging risks; (ii) developing innovative and strategic action points for intervention {in addition to Hazard Analysis and Critical Control Points (HACCP) procedures]; and (iii) introducing additional science-based tools such as metrology-based measurement systems.


2020 ◽  
pp. 3-8
Author(s):  
L.F. Vitushkin ◽  
F.F. Karpeshin ◽  
E.P. Krivtsov ◽  
P.P. Krolitsky ◽  
V.V. Nalivaev ◽  
...  

The State special primary acceleration measurement standard for gravimetry (GET 190-2019), its composition, principle of operation and basic metrological characteristics are presented. This standard is on the upper level of reference for free-fall acceleration measurements. Its accuracy and reliability were improved as a result of optimisation of the adjustment procedures for measurement systems and its integration within the upgraded systems, units and modern hardware components. A special attention was given to adjusting the corrections applied to measurement results with respect to procedural, physical and technical limitations. The used investigation methods made it possibled to confirm the measurement range of GET 190-2019 and to determine the contributions of main sources of errors and the total value of these errors. The measurement characteristics and GET 90-2019 were confirmed by the results obtained from measurements of the absolute value of the free fall acceleration at the gravimetrical site “Lomonosov-1” and by their collation with the data of different dates obtained from measurements by high-precision foreign and domestic gravimeters. Topicality of such measurements ensues from the requirements to handle the applied problems that need data on parameters of the Earth gravitational field, to be adequately faced. Geophysics and navigation are the main fields of application for high-precision measurements in this field.


2019 ◽  
Vol 10 (11) ◽  
pp. 1131-1135
Author(s):  
Tomas Hambili Paulo Sanjuluca ◽  
◽  
Ricardo Correia ◽  
Anabela Antunes de Almeida ◽  
Ana Gloria Diaz Martinez ◽  
...  

Introduction: In order to have a good assessment of the quality of maternal and child health care, it is essential that there is up-to-date and reliable information. Objective: To evaluate the impact of the implementation of a computerized database of clinical processes in the admission, archive and medical statistics section, of Maternity hospital Irene Neto/Lubango-Angola. Methodology: A descriptive study with a quantitative and qualitative approach to carry out a retrospective case study deliveries and newborns, records from 2014 to 2017. Final considerations: The implementation of this project may contribute to the improvement of clinical management support management of the hospital as well as facilitating access to information for research and scientific production.


Sign in / Sign up

Export Citation Format

Share Document