scholarly journals Mechanical Properties of Laser-Sintered 3D-Printed Cobalt Chromium and Soft-Milled Cobalt Chromium

Prosthesis ◽  
2020 ◽  
Vol 2 (4) ◽  
pp. 313-320
Author(s):  
Abdullah Barazanchi ◽  
Kai Chun Li ◽  
Basil Al-Amleh ◽  
Karl Lyons ◽  
J. Neil Waddell

Purpose: To compare the mechanical properties and fracture behaviour of laser-sintered/3D-printed cobalt chromium (LS CoCr) with soft-milled cobalt chromium (SM CoCr) to assess their suitability for use in high-stress areas in the oral cavity. Material and Method: Two computer-aided manufacturing methods were used to fabricate dumbbell specimens in accordance with the ASTM standard E8. Specimens were fractured using tensile testing and elastic modulus, and proof stress and ultimate tensile strength were calculated. Fracture surfaces were examined using scanning electron microscopy. Plate specimens were also fabricated for the examination of hardness and elastic modulus using nanoindentation. Unpaired t-test was used to evaluate statistical significance. Results: LS CoCr specimens were found to have significantly higher ultimate tensile strength (UTS) and proof stress (PS) (p < 0.05) but not a significantly higher elastic modulus (p > 0.05). Examination of the dumbbell fracture surfaces showed uniform structure for the LS CoCr specimens whilst the SM CoCr specimens were perforated with porosities; neither showed an obvious point of fracture. Nanoindentation also showed that LS CoCr specimens possessed higher hardness compared with SM CoCr specimens. Conclusion: LS CoCr and SM CoCr specimens were both found to exhibit uniformly dense structure; although porosities were noted in the SM CoCr specimens. LS CoCr specimens were found to have superior tensile properties, likely due to lack of porosities, however both had mean values higher than those reported in the literature for cast CoCr. Uniformity of structure and high tensile strength indicates that LS CoCr and SM CoCr fabricated alloys are suitable for long-span metallic frameworks for use in the field of prosthodontics.

“Slicing tool” or “Slicing Software” computes the intersection curves of models and slicing planes. They improve the quality of the model being printed when given in the form of STL file. Upon analyzing a specimen that has been printed using two different slicing tools, there was a drastic variation on account of the mechanical properties of the specimen. The ultimate tensile strength and the surface roughness of the material vary from one tool to another. This paper reports an investigation and analysis of the variation in the ultimate tensile strength and the surface roughness of the specimen, given that the 3D printer and the model being printed is the same, with a variation of usage of slicing software. This analysis includes ReplicatorG, Flashprint as the two different slicing tools that are used for slicing of the model. The variation in the ultimate tensile strength and the surface roughness are measured and represented statistically through graphs. An appropriate decisive conclusion was drawn on the basis of the observations and analysis of the experiment on relevance to the behavior and mechanical properties of the specimen.


2021 ◽  
Vol 22 (3) ◽  
pp. 543-550
Author(s):  
V.V. Usov ◽  
N.M. Shkatulyak ◽  
O.S. Savchuk ◽  
N.I. Rybak

This work aims to determine the Kearns texture parameters and evaluate on their basis the elastic moduli, mechanical properties (ultimate tensile strength, conditional yield stress), as well as damageability parameters of the sheets commercial titanium (CT-grade 1: 0.04% Fe; 0.015% C; 0.05% N 0.05% c; 0.009% H)  as delivered after rolling and annealing at 840°C (original sheet) and further alternating bending (AB) in the amount of 0.5; 1, 3 and 5 cycles. Damageability parameters characterizing damage accumulation were determined from the elastic modulus change after the above-mentioned number of AB cycles relative to the values ​​of the elastic modulus in different directions of the original sheet of the studied titanium. The elastic constants of the single crystal and the Kearns texture parameters were used to estimate the elastic modulus in the rolling direction (RD) and transverse direction (TD) of the original sheet, and sheets after an above number of AB cycles. The deviation of the calculated and experimental values ​​of the elastic modulus did not exceed 5%. The deviation of the calculated and experimental values of the ultimate tensile strength and yield stress in the RD and TD both in the initial state and after the corresponding number cycles of the AB did not exceed 10%.


Author(s):  
Xingjian Wei ◽  
Abhinav Bhardwaj ◽  
Chin-Cheng Shih ◽  
Li Zeng ◽  
Bruce Tai ◽  
...  

Abstract The J750 PolyJet printer is the newest model of full-color, multi-material 3D printer from Stratasys. Currently, limited information is available about the effects of control factors on mechanical properties such as elastic modulus, ultimate tensile strength, and elongation. In this study, the effects of two control factors, orientation and layer thickness, on mechanical properties of samples printed by the Stratasys J750 printer are investigated. The results show that orientation significantly affects mechanical properties. Specifically, samples printed with its axial direction parallel to the direction of printing have the highest elastic modulus, and elongation, whereas samples printed with its axial direction perpendicular to the direction of printing have the highest ultimate tensile strength. Also, layer thickness makes a significant difference for mechanical properties, and larger layer thickness leads to higher ultimate tensile strength and elongation. These results would be valuable to researchers and practitioners who use J750.


2021 ◽  
Vol 1208 (1) ◽  
pp. 012019
Author(s):  
Adi Pandzic ◽  
Damir Hodzic

Abstract One of the advantages provided by fused deposition modelling (FDM) 3D printing technology is the manufacturing of product materials with infill structure, which provides advantages such as reduced production time, product weight and even the final price. In this paper, the tensile mechanical properties, tensile strength and elastic modulus, of PLA, Tough PLA and PC FDM 3D printed materials with the infill structure were analysed and compared. Also, the influence of infill pattern on tensile properties was analysed. Material testing were performed according to ISO 527-2 standard. All results are statistically analysed and results showed that infill pattern have influence on tensile mechanical properties for all three materials.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rafael Moreno ◽  
Diego Carou ◽  
Daniel Carazo-Álvarez ◽  
Munish Kumar Gupta

Purpose 3D printing is gaining attention in the medical sector for the development of customized solutions for a wide range of applications such as temporary external implants. The materials used for the manufacturing process are critical, as they must provide biocompatibility and adequate mechanical properties. This study aims to evaluate and model the influence of the printing parameters on the mechanical properties of two biocompatible materials. Design/methodology/approach In this study, the mechanical properties of 3D-printed specimens of two biocompatible materials (ABS medical and PLActive) were evaluated. The influence of several printing parameters (infill density, raster angle and layer height) was studied and modelled on three response variables: ultimate tensile strength, deformation at the ultimate tensile strength and Young’s modulus. Therefore, statistical models were developed to predict the mechanical responses based on the selected printing parameters. Findings The used methodology allowed obtaining compact models that show good fit, particularly, for both the ultimate tensile strength and Young’s modulus. Regarding the deformation at ultimate tensile strength, this output was found to be influenced by more factors and interactions, resulting in a slightly less precise model. In addition, the influence of the printing parameters was discussed in the work. Originality/value The presented paper proposed the use of statistical models to select the printing parameters (infill density, raster angle and layer height) to optimize the mechanical response of external medical aids. The models will help users, researchers and firms to develop optimized solutions that can reduce material costs and printing time but guaranteeing the mechanical response of the parts.


2020 ◽  
Vol 4 (1) ◽  
pp. 12
Author(s):  
Elisa Aznarte Garcia ◽  
Cagri Ayranci ◽  
Ahmed Jawad Qureshi

This study aims to assess the effect of printing parameters on the final tensile properties of 3D printed specimens printed through a popular vat-photopolymerization printer—‘Form 2’. Elastic modulus, ultimate tensile strength and strain at break are analyzed as a function of process parameters in order to provide an optimized print parameter configuration. Design of Experiments (DoE) using Taguchi’s techniques was used to print the test samples. Tensile tests were performed on the 3D printed specimens following the ISO-527 standard. The post-experiment analysis provide more insight on the effect of each studied factor on the elastic properties of these specimens. To complete this study, an analysis of the total manufacturing process time is presented with respect to the aforementioned elastic properties. The study shows that the parts are orthotropic and sensitive to layer height and post-curing. The orthotropic behaviour can be substantially reduced by appropriate post-curing process, resulting in high improvement of the elastic modulus and ultimate tensile strength. This paper is of special interest to researchers and users of desktop 3D printers who wish to improve the performance of their equipment, compare printing capabilities or assess the effect of different hardware on a single resin.


2020 ◽  
Vol 26 (3) ◽  
pp. 127-130
Author(s):  
Nassim Markiz ◽  
Eszter Horváth ◽  
Péter Ficzere

AbstractIn the recent years, additive manufacturing became an interesting topic in many fields due to the ease of manufacturing complex objects. However, it is impossible to determine the mechanical properties of any additive manufacturing parts without testing them. In this work, the mechanical properties with focus on ultimate tensile strength and modulus of elasticity of 3D printed acrylonitrile butadi-ene styrene (ABS) specimens were investigated. The tensile tests were carried using Zwick Z005 loading machine with a capacity of 5KN according to the American Society for Testing and Materials (ASTM) D638 standard test methods for tensile properties of plastics. The aim of this study is to investigate the influence of printing direction on the mechanical properties of the printed specimens. Thus, for each printing direction ( and ), five specimens were printed. Tensile testing of the 3D printed ABS specimens showed that the printing direction made the strongest specimen at an ultimate tensile strength of 22 MPa while at printing direction it showed 12 MPa. No influence on the modulus of elasticity was noticed. The experimental results are presented in the manuscript.


2015 ◽  
Vol 752-753 ◽  
pp. 331-336
Author(s):  
Jan Navratil ◽  
Miroslav Manas ◽  
Michal Stanek ◽  
David Manas ◽  
Martin Bednarik ◽  
...  

Growing usage of radiation crosslinked plastic materials and utilization of their advantageous properties might raise a question of their future recycling. This paper deals with utilization of recycled irradiated polyamide 6 (rPA6x) which is used as a filler into low and high-density polyethylene (LDPE/HDPE) in concentrations 10 and 30 %. Mechanical properties of such blends were investigated and compared. Both blends show similar trend at all observed material characteristics. Elastic modulus representing material stiffness grown with increasing amount of the filler. Ultimate tensile strength and impact toughness decreased and hardness slightly increased. All the obtained results show that it is possible to use recycled radiation crosslinked PA6 as a filler but it is necessary to count with properties change.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Kang I. Chen ◽  
Shou C. Cheng ◽  
Chin H. Cheng ◽  
Sean Wu ◽  
Yeu-L. Jiang ◽  
...  

The effects of gallium additions on microstructures and thermal and mechanical properties of the Sn-9Zn solder alloys are investigated in this study. The results show that the melting temperature of the alloys decreases with the increase in the Ga concentration, while the pasty ranges of the alloys are simultaneously enlarged. By adding a 0.25–0.5 wt.% Ga element, the Sn-matrix region is slightly increased and the Zn-rich phase becomes slightly coarser; however, the overall microstructure is still very similar to that of the Sn-9Zn alloy. It is found that, when the Ga concentration is less than 0.50 wt.%, the ultimate tensile strength and elongation are maintained at the same values. The addition of a 0.25–0.50 wt.% Ga to the Sn-9Zn alloy also leads to small cup and cone fracture surfaces which exhibit near-complete ductile fracturing. With the addition being increased to 0.75 wt.%, larger cup and cone fractures are observed. The 1.00 wt.% Ga alloy has lower strength and ductility due to the coarser and nonuniform microstructures. However, the fracture surfaces of the 1.00 wt.% Ga alloy show partial cleavage and a partially dimpled fracture.


TEM Journal ◽  
2021 ◽  
pp. 1195-1201
Author(s):  
Adi Pandžić ◽  
Damir Hodžić ◽  
Edin Kadrić

One of the advantages of FDM technology is the production of product materials with infill structure. In order to make the most of this advantage, the behaviour of FDM printed material with infill structure under different loads has to be analyzed and understood. Therefore, the goal of this experimental research is to analyze influence of infill density (100%, 80%, 60% and 20%) on tensile mechanical properties (tensile strength and elastic modulus) of PLA antibacterial nanocomposite, tough PLA and ABS-X 3D printed materials.


Sign in / Sign up

Export Citation Format

Share Document