scholarly journals Serum Glycoproteomic Alterations in Patients with Diabetic Retinopathy

Proteomes ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 25
Author(s):  
Ashok Sharma ◽  
James Cox ◽  
Joshua Glass ◽  
Tae Jin Lee ◽  
Sai Karthik Kodeboyina ◽  
...  

The precise molecular mechanisms of diabetic retinopathy (DR) pathogenesis are unclear, and treatment options are limited. There is an urgent need to discover and develop novel therapeutic targets for the treatment of this disease. Glycosylation is a post-translational modification that plays a critical role in determining protein structure, function, and stability. Recent studies have found that serum glycoproteomic changes are associated with the presence or progression of several inflammatory diseases. However, very little is known about the glycoproteomic changes associated with DR. In this study, glycoproteomic profiling of the serum of diabetic patients with and without DR was performed. A total of 15 glycopeptides from 11 glycoproteins were found to be significantly altered (5 upregulated and 10 downregulated) within the serum glycoproteome of DR patients. These glycoproteins are known to be involved in the maintenance of the extracellular matrix and complement system through peptidolytic activity or regulation.

2020 ◽  
Vol 17 ◽  
Author(s):  
Van-An Duong ◽  
Jeeyun Ahn ◽  
Na-Young Han ◽  
Jong-Moon Park ◽  
Jeong-Hun Mok ◽  
...  

Background: Diabetic Retinopathy (DR), one of the major microvascular complications commonly occurring in diabetic patients, can be classified into Proliferative Diabetic Retinopathy (PDR) and Non-Proliferative Diabetic Retinopathy (NPDR). Currently available therapies are only targeted for later stages of the disease in which some pathologic changes may be irreversible. Thus, there is a need to develop new treatment options for earlier stages of DR through revealing pathological mechanisms of PDR and NPDR. Objective: The purpose of this study was to characterize proteomes of diabetic through quantitative analysis of PDR and NPDR. Methods: Vitreous body was collected from three groups: control (non-diabetes mellitus), NPDR, and PDR. Vitreous proteins were digested to peptide mixtures and analyzed using LC-MS/MS. MaxQuant was used to search against the database and statistical analyses were performed using Perseus. Gene ontology analysis, related-disease identification, and protein-protein interaction were performed using the differential expressed proteins. Results: Twenty proteins were identified as critical in PDR and NPDR. The NPDR group showed different expressions of kininogen-1, serotransferrin, ribonuclease pancreatic, osteopontin, keratin type II cytoskeletal 2 epidermal, and transthyretin. Also, prothrombin, signal transducer and activator of transcription 4, hemoglobin subunit alpha, beta, and delta were particularly up-regulated proteins for PDR group. The up-regulated proteins related to complement and coagulation cascades. Statherin was down-regulated in PDR and NPDR compared with the control group. Transthyretin was the unique protein that increased its abundance in NPDR compared with the PDR and control group. Conclusion: This study confirmed the different expressions of some proteins in PDR and NPDR. Additionally, we revealed uniquely expressed proteins of PDR and NPDR, which would be differential biomarkers: prothrombin, alpha-2-HS-glycoprotein, hemoglobin subunit alpha, beta, and transthyretin.


Author(s):  
Yiping Hu ◽  
Juan He ◽  
Lianhua He ◽  
Bihua Xu ◽  
Qingwen Wang

AbstractTransforming growth factor-β (TGF-β) plays a critical role in the pathological processes of various diseases. However, the signaling mechanism of TGF-β in the pathological response remains largely unclear. In this review, we discuss advances in research of Smad7, a member of the I-Smads family and a negative regulator of TGF-β signaling, and mainly review the expression and its function in diseases. Smad7 inhibits the activation of the NF-κB and TGF-β signaling pathways and plays a pivotal role in the prevention and treatment of various diseases. Specifically, Smad7 can not only attenuate growth inhibition, fibrosis, apoptosis, inflammation, and inflammatory T cell differentiation, but also promotes epithelial cells migration or disease development. In this review, we aim to summarize the various biological functions of Smad7 in autoimmune diseases, inflammatory diseases, cancers, and kidney diseases, focusing on the molecular mechanisms of the transcriptional and posttranscriptional regulation of Smad7.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Zhuo Xie ◽  
Mudan Zhang ◽  
Gaoshi Zhou ◽  
Lihui Lin ◽  
Jing Han ◽  
...  

AbstractThe Hedgehog (Hh) signalling pathway plays a critical role in the growth and patterning during embryonic development and maintenance of adult tissue homeostasis. Emerging data indicate that Hh signalling is implicated in the pathogenesis of inflammatory bowel disease (IBD). Current therapeutic treatments for IBD require optimisation, and novel effective drugs are warranted. Targeting the Hh signalling pathway may pave the way for successful IBD treatment. In this review, we introduce the molecular mechanisms underlying the Hh signalling pathway and its role in maintaining intestinal homeostasis. Then, we present interactions between the Hh signalling and other pathways involved in IBD and colitis-associated colorectal cancer (CAC), such as the Wnt and nuclear factor-kappa B (NF-κB) pathways. Furthermore, we summarise the latest research on Hh signalling associated with the occurrence and progression of IBD and CAC. Finally, we discuss the future directions for research on the role of Hh signalling in IBD pathogenesis and provide viewpoints on novel treatment options for IBD by targeting Hh signalling. An in-depth understanding of the complex role of Hh signalling in IBD pathogenesis will contribute to the development of new effective therapies for IBD patients.


2020 ◽  
Vol 29 (157) ◽  
pp. 200269
Author(s):  
Manuela Platé ◽  
Delphine Guillotin ◽  
Rachel C Chambers

Idiopathic pulmonary fibrosis (IPF) is characterised by the progressive deposition of excessive extracellular matrix proteins within the lung parenchyma and represents the most rapidly progressive and fatal of all fibrotic conditions. Current anti-fibrotic drugs approved for the treatment of IPF fail to halt disease progression and have significant side-effect profiles. Therefore, there remains a pressing need to develop novel therapeutic strategies for IPF. Mammalian target of rapamycin (mTOR) forms the catalytic subunit of two complexes, mTORC1 and mTORC2. mTORC1 acts as critical cellular sensor which integrates intracellular and extracellular signals to reciprocally regulate a variety of anabolic and catabolic processes. The emerging evidence for a critical role for mTORC1 in influencing extracellular matrix production, metabolism, autophagy and senescence in the setting of IPF highlights this axis as a novel therapeutic target with the potential to impact multiple IPF pathomechanisms.


Nutrients ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 771 ◽  
Author(s):  
Maria Grazia Rossino ◽  
Giovanni Casini

Diabetic retinopathy (DR) is one of the most common complications of diabetes mellitus and is characterized by degeneration of retinal neurons and neoangiogenesis, causing a severe threat to vision. Nowadays, the principal treatment options for DR are laser photocoagulation, vitreoretinal surgery, or intravitreal injection of drugs targeting vascular endothelial growth factor. However, these treatments only act at advanced stages of DR, have short term efficacy, and cause side effects. Treatment with nutraceuticals (foods providing medical or health benefits) at early stages of DR may represent a reasonable alternative to act upstream of the disease, preventing its progression. In particular, in vitro and in vivo studies have revealed that a variety of nutraceuticals have significant antioxidant and anti-inflammatory properties that may inhibit the early diabetes-driven molecular mechanisms that induce DR, reducing both the neural and vascular damage typical of DR. Although most studies are limited to animal models and there is the problem of low bioavailability for many nutraceuticals, the use of these compounds may represent a natural alternative method to standard DR treatments.


Hematology ◽  
2016 ◽  
Vol 2016 (1) ◽  
pp. 683-689 ◽  
Author(s):  
Michelle Lavin ◽  
James S. O’Donnell

Abstract von Willebrand disease (VWD) is the commonest inherited bleeding disorder and results from either a quantitative or qualitative deficiency in the plasma glycoprotein von Willebrand factor (VWF). Recent large cohort studies have significantly enhanced our understanding of the molecular mechanisms involved in the pathogenesis of VWD. In contrast, however, there have been relatively few advances in the therapeutic options available for the treatment of bleeding in patients with VWD. Established treatment options include tranexamic acid, 1-deamino-8-d-arginine vasopressin (DDAVP), and plasma-derived VWF concentrates. In addition, a recombinant VWF has also recently been developed. In this review, we focus on how recent insights into the clinical and molecular aspects underpinning VWD are already beginning to influence treatment in the clinic. For example, a number of different bleeding assessment tools (BATs) have been developed to objectively assess bleeding symptoms in patients with VWD. Interestingly, however, these BAT scores may also have an important role to play in predicting bleeding risk in VWD. Furthermore, recent studies have demonstrated that enhanced VWF clearance plays a critical role in the etiology of both type 1 and type 2 VWD. These findings have direct translational relevance with respect to the use of DDAVP in patients with VWD. As understanding of the mechanisms involved in VWD pathogenesis continues to advance, novel treatment options are likely to emerge. Critically, however, large adequately powered and stratified clinical trials will be required to address the outstanding questions that remain regarding VWD treatment optimization.


Author(s):  
Yufei Xie ◽  
Annemarie H. Meijer ◽  
Marcel J. M. Schaaf

Dysregulation of the inflammatory response in humans can lead to various inflammatory diseases, like asthma and rheumatoid arthritis. The innate branch of the immune system, including macrophage and neutrophil functions, plays a critical role in all inflammatory diseases. This part of the immune system is well-conserved between humans and the zebrafish, which has emerged as a powerful animal model for inflammation, because it offers the possibility to image and study inflammatory responses in vivo at the early life stages. This review focuses on different inflammation models established in zebrafish, and how they are being used for the development of novel anti-inflammatory drugs. The most commonly used model is the tail fin amputation model, in which part of the tail fin of a zebrafish larva is clipped. This model has been used to study fundamental aspects of the inflammatory response, like the role of specific signaling pathways, the migration of leukocytes, and the interaction between different immune cells, and has also been used to screen libraries of natural compounds, approved drugs, and well-characterized pathway inhibitors. In other models the inflammation is induced by chemical treatment, such as lipopolysaccharide (LPS), leukotriene B4 (LTB4), and copper, and some chemical-induced models, such as treatment with trinitrobenzene sulfonic acid (TNBS), specifically model inflammation in the gastro-intestinal tract. Two mutant zebrafish lines, carrying a mutation in the hepatocyte growth factor activator inhibitor 1a gene (hai1a) and the cdp-diacylglycerolinositol 3-phosphatidyltransferase (cdipt) gene, show an inflammatory phenotype, and they provide interesting model systems for studying inflammation. These zebrafish inflammation models are often used to study the anti-inflammatory effects of glucocorticoids, to increase our understanding of the mechanism of action of this class of drugs and to develop novel glucocorticoid drugs. In this review, an overview is provided of the available inflammation models in zebrafish, and how they are used to unravel molecular mechanisms underlying the inflammatory response and to screen for novel anti-inflammatory drugs.


Author(s):  
Xiwei Fan ◽  
Xiaoxin Wu ◽  
Ross Crawford ◽  
Yin Xiao ◽  
Indira Prasadam

Osteoarthritis (OA) is a long-term condition that causes joint pain and reduced movement. Notably, the same pathways governing cell growth, death, and differentiation during the growth and development of the body are also common drivers of OA. The osteochondral interface is a vital structure located between hyaline cartilage and subchondral bone. It plays a critical role in maintaining the physical and biological function, conveying joint mechanical stress, maintaining chondral microenvironment, as well as crosstalk and substance exchange through the osteochondral unit. In this review, we summarized the progress in research concerning the area of osteochondral junction, including its pathophysiological changes, molecular interactions, and signaling pathways that are related to the ultrastructure change. Multiple potential treatment options were also discussed in this review. A thorough understanding of these biological changes and molecular mechanisms in the pathologic process will advance our understanding of OA progression, and inform the development of effective therapeutics targeting OA.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2950-2950
Author(s):  
Charitha Madiraju ◽  
Shu-ichi Matsuzawa ◽  
Robert Ardecky ◽  
Ian Pass ◽  
Tram Ngo ◽  
...  

Abstract Abstract 2950 Poly-ubiquitination of signaling proteins via lysine 63 (K63)-linked chains is recognized as a critical post-translational modification involved in activation of NF-kB and stress kinases in the context of signaling by Tumor Necrosis Factor Receptors (TNFRs), Toll-like receptors (TLRs), and antigen receptors. UBC13 is a K63-specific ubiquitin conjugating enzyme that partners with TNFR-associated factors (TRAFs) to mediate K63-linked ubiquitination. Gene ablation studies have shown UBC13 is required for NF-kB signaling induced by a variety of stimuli in specific types of immune cells, making it a potential target for certain cancers, autoimmune and inflammatory diseases. UBC13 operates together with obligatory cofactors, either UEV1A in the cytosol or MMS2 in the nucleus. The nuclear function of UBC13 is evolutionarily conserved, where it plays a critical role in double strand DNA repair, making UBC13 a potential chemo- and radio-sensitizer target for oncology. To identify chemical inhibitors of UBC13, we developed a HTS assay measuring UBC13-UEV1A enzymatic activity by TR-FRET, screening altogether ∼450,000 diverse compounds. Hit compounds were characterized using a rigorous testing funnel consisting of (a) informatics filtering against a database of > 100 HTS campaigns conducted with the same libraries, to eliminate promiscuous compounds; (b) counter-screens against E1, another cysteine-dependent enzyme (caspase-3), and against an irrelevant target formatted as a TR-FRET assay; and (c) ordering compounds from fresh powders and demonstrating reproducible concentration-dependent inhibition of UBC13. The surviving hits were then analyzed by cell-based assays for suppression of TRAF6 ubiquitination but not Mdm2-mediated ubiquitination of p53, resulting in 14 promising hits that included two chemical series. While suppressing TRAF6 ubiquitination (UBC13-dependent) in cells, these compounds did not interfere with either SUMOylation (UBC9-dependent) or NEDDylation (UBC12-dependent) of cellular proteins. UBC13 inhibitors also suppressed NF-kB activity (measured using stably integrated NF-kB-driven luciferase reporter gene) induced by PKC activators (Carma/Bcl-10/MALT pathway) and DNA damaging agent (Doxorubicin) but not by TNF-a. Investigations of the bioactivity of these UBC13 inhibitory compounds and their analogs will be described for a variety of hematolymphoid malignancies. (Supported by NIH R03-MH085677, NIH U54–005033, and by a fellowship grant from International Myeloma Foundation). Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document