scholarly journals Worry about Climate Change and Urban Flooding Risk Preparedness in Southern Italy: A Survey in the Simeto River Valley (Sicily, Italy)

Resources ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 25
Author(s):  
Paola Nanni ◽  
David J. Peres ◽  
Rosaria E. Musumeci ◽  
Antonino Cancelliere

Intensive urbanization and related increase of impervious surfaces, causes negative impacts on the hydrological cycle, amplifying the risk of urban floods. These impacts can get even worse due to potential climate change impacts. The urban areas of the Simeto River Valley (SRV), the largest river valley in Sicily (Italy), have been repeatedly hit by intense rainfall events in the last decades that lead to urban flooding, causing several damages and, in some instances, threats to population. In this paper, we present the results of a 10-question survey on climate change and risk perception in 11 municipalities of the SRV carried out within the activities of the LIFE project SimetoRES, which allowed to collect 1143 feedbacks from the residents. The survey investigated: (a) the level of worry about climate change in relation to extreme storms, (b) elements of urban flooding risk preparedness: the direct experience of the residents during heavy rain events, their trust in a civil protection regional alert system, and their knowledge of the correct behavior in case of flood, and (c) the willingness of citizens to implement sustainable drainage actions for climate change adaptation in their own municipality and real estates. The results show that more than 52% of citizens has inadequate knowledge of the correct behavior during flooding events and only 30% of them feel responsible for mitigation of flooding risk. There is a modest willingness by the population to support the construction of sustainable urban drainage infrastructures. A statistical cross-analysis of the answers to the different questions, based on contingency matrices and conditional frequencies, has shown that a greater worry about climate change has no significant impact either on the behavior of people in dangerous situations occurring during flooding events or on the willingness to support financially sustainable solutions. These results suggest that to build a higher worry about climate change and related urban flooding risk is not sufficient to have better preparedness, and that more direct educative actions are necessary in the area.

2020 ◽  
Author(s):  
Paola Nanni ◽  
Rosaria Ester Musumeci ◽  
David J. Peres ◽  
Antonino Cancelliere

<p>Increased urbanization is causing evident negative consequences on the hydrological cycle. In particular, the increase of impervious surfaces is having a strong impact on the water cycle, amplifying the risk of urban floods. These impacts can get even worse for potential climate change impacts. The urban areas of the Simeto Valley, the largest river valley in Sicily (Italy), has been repeatedly hit by heavy rains in the last decades that caused urban flooding causing several problems and, in some instances, threats to population. The threats seem to derive also from a low awareness of the population on the correct behavior to have in potentially dangerous situations. Hence, it seems of key importance that residents develop and internalize a “culture of risk awareness”. The Life SimetoRES Project represents an opportunity to stimulate the development of a responsible and resilient community and at the implementation of best practices for storm water management. In the Simeto River Valley community has started in the recent decades to formally have an identity (for instance, by signing a River Agreement) and has already supported initiatives in the responsible and participatory co-management of the territory. Thus, this Valley represents an excellent context to investigate this problem and to understand the involvement of the citizens in solving climate change and urban floods. In order to maximize the effectiveness of the communication campaigns and the actions to safeguard the community, a study through a survey on the climate change and risk perception in 11 municipalities has been carried out, collecting 1143 answers. Starting from the current hydrogeological risk, quantified by the Flood Risk Management Plan, the goal was to identify the perception and the awareness of the citizens. A section of the questionnaire involved the direct experience of the residents during rain events, their relationship with the alert system and their knowledge of the correct behavior in case of flood. Finally, the survey investigated the willingness of citizens to implement adaptation actions in their own municipality and in their homes. The results show that over 52% of citizens is not aware of the real use of the infrastructures devised for urban drainage and only the 30% feels responsible about mitigation of flooding risk. Inaccurate weather warnings can endanger more inhabitants who don't trust the alert system. The results show that it is necessary to make incisive actions to educate people, especially in school age, on the correct behavior to take in case of urban flooding, and encourage citizens to acknowledge themselves as an active part of the mechanism of their own and community safety.</p>


2020 ◽  
Vol 12 (6) ◽  
pp. 2330 ◽  
Author(s):  
Barry Evans ◽  
Albert S. Chen ◽  
Slobodan Djordjević ◽  
James Webber ◽  
Andoni González Gómez ◽  
...  

This paper outlines the work carried out within the RESCCUE (RESilience to cope with Climate Change in Urban ArEas) project that is, in part, examining the impacts of climate-driven hazards on critical services and infrastructures within cities. In this paper, we examined the methods employed to assess the impacts of pluvial flooding events for varying return periods for present-day (Baseline) and future Climate Change with no adaptation measures applied (Business as Usual) conditions on traffic flows within cities. Two cities were selected, Barcelona and Bristol, with the former using a meso-scale and the latter a micro-scale traffic model. The results show how as the severity of flooding increases the disruption/impacts on traffic flows increase and how the effects of climate change will increase these impacts accordingly.


2008 ◽  
Vol 57 (5) ◽  
pp. 741-746 ◽  
Author(s):  
N Bertrand ◽  
B Jefferson ◽  
P Jeffrey

With the growth of urban areas and climate change, decisions need to be taken to improve water management. This paper reports an assessment of the impact of greywater recycling systems on catchment scale hydrological flows. A simulation model developed in InfoWorks CS (Wallingford Software Ltd) was used to evaluate how river flows, sewer flows, surface runoff and flooding events may be influenced when grey water recycling systems of different number and scale are implemented in a representative catchment. The simulations show the effectiveness of greywater recycling systems in reducing total wastewater volume and flood volume. However, no hydraulic impacts due to implementation of greywater was identified by the model.


Climate ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 152
Author(s):  
Arianna Dada ◽  
Christian Urich ◽  
Francesca Berteni ◽  
Michèle Pezzagno ◽  
Patrizia Piro ◽  
...  

Climate change is globally causing more intense meteorological phenomena. Our cities experience increased rainfall intensity, more intense heat waves, and prolonged droughts providing economic, social, health and environmental challenges. Combined with population growth and rapid urbanization, the increasing impact of climate change will make our cities more and more vulnerable, especially to urban flooding. In order to adapt our urban water systems to these challenges, the adoption of newly emerging water management strategies is required. The complexity and scale of this challenge calls for the integration of knowledge from different disciplines and collaborative approaches. The water sensitive cities principles provide guidance for developing new techniques, strategies, policies, and tools to improve the livability, sustainability, and resilience of cities. In this study, the DAnCE4Water modeling approach promoting the development of water sensitive cities was applied to Parma, an Italian town that has faced serious water issues in the last few years. The city, indeed, had to face the consequences of flooding several times, caused by the inadequacy of both the network of open channels and the sewerage network due to the urban expansion and climate change of the last 30 years. Through the model, the efficiency of decentralized technologies, such as green roofs and porous pavement, and their integration with the existing centralized combined sewer system was assessed under a range of urban development scenarios. The obtained results show that the adoption of an integrated approach, including soft engineering hydraulic strategies, consisting in the use of natural and sustainable solutions, can increase resilience to urban flooding. Further, the study shows that there is a critical need for strategic investment in solutions that will deliver long-term sustainable outcomes.


2021 ◽  
Vol 2 (4) ◽  
pp. 261-267
Author(s):  
M Maryam ◽  
R Kumar ◽  
N Thahaby

Changes in climate, waterlogging hazards and regional floods are more prominent in present context. The paper reviews potential of flood hazard in dense urban areas, using GIS-based 1-D hydrodynamic model (MIKE URBAN). The major factor contributing to the urban waterlogging in recent decades is the climatic variability and thus the long-term variations of precipitation and drainage system of an urban area were evaluated. MIKE URBAN (1-D) hydrodynamic model can be used to comprehensively simulate inundation processes. The model simulates the processes of rainfall and runoff, urban drainage, and flooding. MIKE URBAN can be used to appraise the potential immersion dangers of any planned drainage system. This paper reviews the increasingly urban flooding events expected in the future for the different cities across the globe. Thus, the surface runoff processes of cities need to examine the regional drainage system.


2009 ◽  
Vol 60 (1) ◽  
pp. 77-85 ◽  
Author(s):  
A. C. Cashman

Flooding processes are complex and can occur throughout urban areas sometimes with devastating consequences. Traditionally flood risks have been managed through a combination of structural defence measures, warnings and emergency measures. More recently they have included development controls and land zoning policies. When such measures fail, individuals, authorities and the economy have to cope with the consequences. There is a growing realization that the resilience of individuals and institutions to floods and the risks from flooding need to be addressed. In the past few years there has been what some have referred to as a paradigm shift in the way responses to flooding are being conceptualized and the way this affects actors and actions. Based on fieldwork including interviews this paper presents two examples of actor and institutional responses to flooding events from the cities of Bradford and Glasgow in the United Kingdom.


2020 ◽  
Vol 12 (13) ◽  
pp. 5291 ◽  
Author(s):  
Edwar Forero-Ortiz ◽  
Eduardo Martínez-Gomariz ◽  
Manuel Cañas Porcuna ◽  
Luca Locatelli ◽  
Beniamino Russo

Flooding events can produce significant disturbances in underground transport systems within urban areas and lead to economic and technical consequences, which can be worsened by variations in the occurrence of climate extremes. Within the framework of the European project RESCCUE (RESilience to cope with Climate Change in Urban arEas—a multi-sectorial approach focusing on water), climate projections for the city of Barcelona manifest meaningful increases in maximum rainfall intensities for the 2100 horizon. A better comprehension of these impacts and their conditions is consequently needed. A hydrodynamic modelling process was carried out on Barcelona Metro Line 3, as it was identified as vulnerable to pluvial flooding events. The Metro line and all its components are simulated in the urban drainage models as a system of computational link and nodes reproducing the main physical characteristics like slopes and cross-sections when embedded in the current 1D/2D hydrodynamic model of Barcelona used in the project RESCCUE. This study presents a risk analysis focused on ensuring transport service continuity in flood events. The results reveal that two of the 26 stations on Metro Line 3 are exposed to a high risk of flooding in current rainfall conditions, and 11 of the 26 stations on Metro Line 3 are exposed to a high risk of flooding in future rainfall conditions for a 20-year return period event, which affects Metro service in terms of increased risk. This research gives insights for stakeholders and policymakers to enhance urban flood risk management, as a reasonable approach to tackle this issue for Metro systems worldwide. This study provides a baseline for assessing potential flood outcomes in Metro systems and can be used to evaluate adaptation measures’ effectiveness.


2020 ◽  
Vol 12 (21) ◽  
pp. 8931
Author(s):  
João Barreiro ◽  
Ruth Lopes ◽  
Filipa Ferreira ◽  
Rita Brito ◽  
Maria João Telhado ◽  
...  

Urban environments are challenged with unprecedented anthropogenic and natural pressures, the latter being accelerated by the growing awareness of the consequences of climate change. The concept of urban resilience has been growing in response, since it allows us to understand city behaviour as a system of systems, improving its response to extreme climate-related events. This paper presents the EU H2020 Resilience to Cope with Climate Change in Urban Areas (RESCCUE) project approach in Lisbon’s research site, regarding the Hazur® resilience assessment methodology. This methodology focuses on the interdependencies between services and infrastructures, and on the recovery times needed to restore its normal functionalities. This approach allows the integration of several work packages of the RESCCUE project, from climate change projections to adaptation strategies selection. The assessment was conducted for 19 services and 146 infrastructures, including water (supply and drainage systems), power, mobility, waste, telecommunication, environment, and the social sector. The principal climate-related hazard analysed at the Lisbon research site was urban flooding. The main result consists of a deep understanding of the relations between different services and the consequent cascade effects triggered by flooding events. Stakeholders’ involvement, beyond the project consortium, was fundamental for the success of the methodology implementation.


2020 ◽  
Vol 2 ◽  
pp. 23-27
Author(s):  
Bismo Jelantik Joyodiharjo ◽  
Yasraf Amir Piliang ◽  
Dwinita Larasati

As a young species of 200.000 years, human is part of earth ecosystem. For 3.8 billion years, other livingbeings have evolved, adapting and selected by nature, until we came and disrupt the balance. Populationgrowth and climate change impact all of earth’s ecosystem. Urbanization and deforestation resulted in floodingin parts of Indonesia. Flooding is worse in urban areas as more risks involved. The Search and Rescueoperation can benefit from remote controlled unmanned vehicles to help save people. Conventional propulsionuses propeller, however in urban flooding condition, there are lots of debris in the water and the propeller canget stuck. Biomimicry uses nature’s genius to solve problem with emphasis on sustainability. This approachseeks nature’s advice in designing an alternative solution to the propeller problem in certain condition. Mobuliformswimmers, such as Manta Rays, present a model of efficient and debris-proof propulsion that can be used inthe search and rescue unmanned vehicles. This paper will highlight the Biomimicry process in designing aSearch and Rescue vehicle, called RCM3D-SAR that uses inspiration from Manta Ray’s pectoral fins. Thedesign is based on additive manufacturing technology and form follows function approach.


2012 ◽  
Vol 3 (3) ◽  
pp. 225-238 ◽  
Author(s):  
Vivek Shandas ◽  
Meenakshi Rao ◽  
Moriah McSharry McGrath

Social and behavioral research is crucial for securing environmental sustainability and improving human living environments. Although the majority of people now live in urban areas, we have limited empirical evidence of the anticipated behavioral response to climate change. Using empirical data on daily household residential water use and temperature, our research examines the implications of future climate conditions on water conservation behavior in 501 households within the Portland (OR) metropolitan region. We ask whether and how much change in ambient temperatures impact residential household water use, while controlling for taxlot characteristics. Based on our results, we develop a spatially explicit description about the changes in future water use for the study region using a downscaled future climate scenario. The results suggest that behavioral responses are mediated by an interaction of household structural attributes, and magnitude and temporal variability of weather parameters. These findings have implications for the way natural resource managers and planning bureaus prepare for and adapt to future consequences of climate change.


Sign in / Sign up

Export Citation Format

Share Document