scholarly journals Flood Risk Assessment in an Underground Railway System under the Impact of Climate Change—A Case Study of the Barcelona Metro

2020 ◽  
Vol 12 (13) ◽  
pp. 5291 ◽  
Author(s):  
Edwar Forero-Ortiz ◽  
Eduardo Martínez-Gomariz ◽  
Manuel Cañas Porcuna ◽  
Luca Locatelli ◽  
Beniamino Russo

Flooding events can produce significant disturbances in underground transport systems within urban areas and lead to economic and technical consequences, which can be worsened by variations in the occurrence of climate extremes. Within the framework of the European project RESCCUE (RESilience to cope with Climate Change in Urban arEas—a multi-sectorial approach focusing on water), climate projections for the city of Barcelona manifest meaningful increases in maximum rainfall intensities for the 2100 horizon. A better comprehension of these impacts and their conditions is consequently needed. A hydrodynamic modelling process was carried out on Barcelona Metro Line 3, as it was identified as vulnerable to pluvial flooding events. The Metro line and all its components are simulated in the urban drainage models as a system of computational link and nodes reproducing the main physical characteristics like slopes and cross-sections when embedded in the current 1D/2D hydrodynamic model of Barcelona used in the project RESCCUE. This study presents a risk analysis focused on ensuring transport service continuity in flood events. The results reveal that two of the 26 stations on Metro Line 3 are exposed to a high risk of flooding in current rainfall conditions, and 11 of the 26 stations on Metro Line 3 are exposed to a high risk of flooding in future rainfall conditions for a 20-year return period event, which affects Metro service in terms of increased risk. This research gives insights for stakeholders and policymakers to enhance urban flood risk management, as a reasonable approach to tackle this issue for Metro systems worldwide. This study provides a baseline for assessing potential flood outcomes in Metro systems and can be used to evaluate adaptation measures’ effectiveness.

2008 ◽  
Vol 57 (5) ◽  
pp. 741-746 ◽  
Author(s):  
N Bertrand ◽  
B Jefferson ◽  
P Jeffrey

With the growth of urban areas and climate change, decisions need to be taken to improve water management. This paper reports an assessment of the impact of greywater recycling systems on catchment scale hydrological flows. A simulation model developed in InfoWorks CS (Wallingford Software Ltd) was used to evaluate how river flows, sewer flows, surface runoff and flooding events may be influenced when grey water recycling systems of different number and scale are implemented in a representative catchment. The simulations show the effectiveness of greywater recycling systems in reducing total wastewater volume and flood volume. However, no hydraulic impacts due to implementation of greywater was identified by the model.


2021 ◽  
Vol 13 (24) ◽  
pp. 5154
Author(s):  
Guangpeng Wang ◽  
Lianyou Liu ◽  
Peijun Shi ◽  
Guoming Zhang ◽  
Jifu Liu

Metro systems have become high-risk entities due to the increased frequency and severity of urban flooding. Therefore, understanding the flood risk of metro systems is a prerequisite for mega-cities’ flood protection and risk management. This study proposes a method for accurately assessing the flood risk of metro systems based on an improved trapezoidal fuzzy analytic hierarchy process (AHP). We applied this method to assess the flood risk of 14 lines and 268 stations of the Guangzhou Metro. The risk results validation showed that the accuracy of the improved trapezoidal fuzzy AHP (90% match) outperformed the traditional trapezoidal AHP (70% match). The distribution of different flood risk levels in Guangzhou metro lines exhibited a polarization signature. About 69% (155 km2) of very high and high risk zones were concentrated in central urban areas (Yuexiu, Liwan, Tianhe, and Haizhu); the three metro lines with the highest overall risk level were lines 3, 6, and 5; and the metro stations at very high risk were mainly located on metro lines 6, 3, 5, 1, and 2. Based on fieldwork, we suggest raising exits, installing watertight doors, and using early warning strategies to resist metro floods. This study can provide scientific data for decision-makers to reasonably allocate flood prevention resources, which is significant in reducing flood losses and promoting Guangzhou’s sustainable development.


2020 ◽  
Author(s):  
Max Tesselaar ◽  
W. J. Wouter Botzen ◽  
Jeroen C. J. H. Aerts

<p>Flood insurance coverage can enhance financial resilience of households to changing flood risk caused by climate change. However, due to increasing risk in many areas, premiums are likely to rise, which may cause insurance to become unaffordable for low-income households. This issue can become especially prominent in high-risk areas, when premiums are risk-reflective. Consequently, increasing premiums can reduce the demand for insurance coverage when this is optional, as individuals often underestimate the flood risk they face. After a flood, uninsured households then have to rely on private savings or ex-post government disaster relief. This situation is suboptimal as households may not save sufficiently to cover the damage, and government compensation can be uncertain. Using a modeling approach we simulate unaffordability and uptake of various forms of flood insurance systems in EU countries. To do this, we build upon and advance the “Dynamic Integrated Flood Insurance” (DIFI) model, which integrates flood risk simulations, with an insurance sector and a consumer behavior model. We compute the results using various climatic- and socio-economic scenarios in order to assess the impact of climate- and socio-economic change for flood insurance in the EU. Furthermore, we assess the impact of remote natural disasters on flood insurance premiums in EU countries, which occurs through the global reinsurance market. More specifically, after large natural disasters or compound events occurring outside the EU, which are likely to occur more often due to climate change, reinsurance premiums can temporarily rise as a result of a global “hard” capital market for reinsurers. The higher cost of capital for reinsurers is then transferred to households in the EU through higher flood insurance premiums. We find that rising average, and higher variance, of flood risk towards the end of the century can increase flood insurance premiums, and cause higher premium volatility resulting from global reinsurance market conditions. The rise in premiums increases unaffordability of insurance coverage and results in declining demand for flood insurance. A proposed policy improvement is to introduce a public reinsurance system for flood risk, as governments can often provide cheaper reinsurance coverage and are less subject to volatility on capital markets. Besides this, we recommend a limited degree of premium cross-subsidization to limit the growth of premiums in high-risk areas, and insurance purchase requirements to increase the level of financial protection against flooding.  </p>


2021 ◽  
Vol 13 (10) ◽  
pp. 5411
Author(s):  
Elisabeth Bloder ◽  
Georg Jäger

Traffic and transportation are main contributors to the global CO2 emissions and resulting climate change. Especially in urban areas, traffic flow is not optimal and thus offers possibilities to reduce emissions. The concept of a Green Wave, i.e., the coordinated switching of traffic lights in order to favor a single direction and reduce congestion, is often discussed as a simple mechanism to avoid breaking and accelerating, thereby reducing fuel consumption. On the other hand, making car use more attractive might also increase emissions. In this study, we use an agent-based model to investigate the benefit of a Green Wave in order to find out whether it can outweigh the effects of increased car use. We find that although the Green Wave has the potential to reduce emissions, there is also a high risk of heaving a net increase in emissions, depending on the specifics of the traffic system.


Author(s):  
Mariya Bezgrebelna ◽  
Kwame McKenzie ◽  
Samantha Wells ◽  
Arun Ravindran ◽  
Michael Kral ◽  
...  

This systematic review of reviews was conducted to examine housing precarity and homelessness in relation to climate change and weather extremes internationally. In a thematic analysis of 15 reviews (5 systematic and 10 non-systematic), the following themes emerged: risk factors for homelessness/housing precarity, temperature extremes, health concerns, structural factors, natural disasters, and housing. First, an increased risk of homelessness has been found for people who are vulnerably housed and populations in lower socio-economic positions due to energy insecurity and climate change-induced natural hazards. Second, homeless/vulnerably-housed populations are disproportionately exposed to climatic events (temperature extremes and natural disasters). Third, the physical and mental health of homeless/vulnerably-housed populations is projected to be impacted by weather extremes and climate change. Fourth, while green infrastructure may have positive effects for homeless/vulnerably-housed populations, housing remains a major concern in urban environments. Finally, structural changes must be implemented. Recommendations for addressing the impact of climate change on homelessness and housing precarity were generated, including interventions focusing on homelessness/housing precarity and reducing the effects of weather extremes, improved housing and urban planning, and further research on homelessness/housing precarity and climate change. To further enhance the impact of these initiatives, we suggest employing the Human Rights-Based Approach (HRBA).


Author(s):  
Michalis I. Vousdoukas ◽  
Dimitrios Bouziotas ◽  
Alessio Giardino ◽  
Laurens M. Bouwer ◽  
Evangelos Voukouvalas ◽  
...  

Abstract. An upscaling of flood risk assessment frameworks beyond regional and national scales has taken place during recent years, with a number of large-scale models emerging as tools for hotspot identification, support for international policy-making and harmonization of climate change adaptation strategies. There is, however, limited insight on the scaling effects and structural limitations of flood risk models and, therefore, the underlying uncertainty. In light of this, we examine key sources of epistemic uncertainty in the Coastal Flood Risk (CFR) modelling chain: (i) the inclusion and interaction of different hydraulic components leading to extreme sea-level (ESL); (ii) inundation modelling; (iii) the underlying uncertainty in the Digital Elevation Model (DEM); (iv) flood defence information; (v) the assumptions behind the use of depth-damage functions that express vulnerability; and (vi) different climate change projections. The impact of these uncertainties to estimated Expected Annual Damage (EAD) for present and future climates is evaluated in a dual case study in Faro, Portugal and in the Iberian Peninsula. The ranking of the uncertainty factors varies among the different case studies, baseline CFR estimates, as well as their absolute/relative changes. We find that uncertainty from ESL contributions, and in particular the way waves are treated, can be higher than the uncertainty of the two greenhouse gas emission projections and six climate models that are used. Of comparable importance is the quality of information on coastal protection levels and DEM information. In the absence of large-extent datasets with sufficient resolution and accuracy the latter two factors are the main bottlenecks in terms of large-scale CFR assessment quality.


2016 ◽  
Vol 16 (11) ◽  
pp. 2357-2371 ◽  
Author(s):  
Patric Kellermann ◽  
Christine Schönberger ◽  
Annegret H. Thieken

Abstract. Experience has shown that river floods can significantly hamper the reliability of railway networks and cause extensive structural damage and disruption. As a result, the national railway operator in Austria had to cope with financial losses of more than EUR 100 million due to flooding in recent years. Comprehensive information on potential flood risk hot spots as well as on expected flood damage in Austria is therefore needed for strategic flood risk management. In view of this, the flood damage model RAIL (RAilway Infrastructure Loss) was applied to estimate (1) the expected structural flood damage and (2) the resulting repair costs of railway infrastructure due to a 30-, 100- and 300-year flood in the Austrian Mur River catchment. The results were then used to calculate the expected annual damage of the railway subnetwork and subsequently analysed in terms of their sensitivity to key model assumptions. Additionally, the impact of risk aversion on the estimates was investigated, and the overall results were briefly discussed against the background of climate change and possibly resulting changes in flood risk. The findings indicate that the RAIL model is capable of supporting decision-making in risk management by providing comprehensive risk information on the catchment level. It is furthermore demonstrated that an increased risk aversion of the railway operator has a marked influence on flood damage estimates for the study area and, hence, should be considered with regard to the development of risk management strategies.


Author(s):  
Froilan D. Mobo

Today’s climate is unpredictable there are so many natural calamities which took place in our country which is the Philippines, two weeks ago because of the sudden changes of the weather in the Province of Zambales, the Philippines a strong tornado hits the town of Castillejos, Zambales which some of the electrical wirings were severely damaged because of the sudden change of the climate. The researcher is thinking of implementing a home gardening to each Municipality in our Province. By doing this it can help lessen the pollution in the air and it will help heal our Ozone Layer faster. The empirical evidence for the benefits of gardening and the advocate of the development and testing of socio-ecological models of community resilience through the impact of community gardens, especially in urban areas is highly effective(Okvat & Zautra, 2011). As lessening the air pollution will have a greater impact on our Ozone Layer no to deplete but it will heal the would faster. The present study revealed that local experiences in the face of climate change adaptation have merits that need special consideration(Anik & Khan, 2012). Also, the Researcher will implement this project in the Municipality of Subic, Zambales.


Open Heart ◽  
2018 ◽  
Vol 5 (2) ◽  
pp. e000852 ◽  
Author(s):  
Artin Entezarjou ◽  
Moman Aladdin Mohammad ◽  
Pontus Andell ◽  
Sasha Koul

BackgroundST-elevation myocardial infarction (STEMI) occurs as a result of rupture of an atherosclerotic plaque in the coronary arteries. Limited data exist regarding the impact of culprit coronary vessel on hard clinical event rates. This study investigated the impact of culprit vessel on outcomes after primary percutaneous coronary intervention (PCI) of STEMI.MethodsA total of 29 832 previously cardiac healthy patients who underwent primary PCI between 2003 and 2014 were prospectively included from the Swedish Coronary Angiography and Angioplasty Registry and the Registry of Information and Knowledge about Swedish Heart Intensive care Admissions. Patients were stratified into three groups based on culprit vessel (right coronary artery (RCA), left anterior descending artery (LAD) and left circumflex artery (LCx)). The primary outcome was 1-year mortality. The secondary outcomes included 30-day and 5-year mortality, as well as heart failure, stroke, bleeding and myocardial reinfarction at 30 days, 1 year and 5 years. Univariable and multivariable analyses were done using Cox regression models.ResultsOne-year analyses revealed that LAD infarctions had the highest increased risk of death, heart failure and stroke compared with RCA infarctions, which had the lowest risk. Sensitivity analyses revealed that reduced left ventricular ejection fraction on discharge partially explained this increased relative risk in mortality. Furthermore, landmark analyses revealed that culprit vessel had no significant influence on 1-year mortality if a patient survived 30 days after myocardial infarction. Subgroup analyses revealed female sex and multivessel disease (MVD) as significant high-risk groups with respect to 1-year mortality.ConclusionsLAD and LCx infarctions had a relatively higher adjusted mortality rate compared with RCA infarctions, with LAD infarctions in particular being associated with an increased risk of heart failure, stroke and death. Culprit vessel had limited influence on mortality after 1 month. High-risk patient groups include LAD infarctions in women or with concomitant MVD.


Weather ◽  
2021 ◽  
Vol 76 (10) ◽  
pp. 330-331
Author(s):  
Linda Speight ◽  
Karolina Krupska

Sign in / Sign up

Export Citation Format

Share Document