scholarly journals Pellet Production from Residual Biomass of Greenery Maintenance in a Small-Scale Company to Improve Sustainability

Resources ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 122
Author(s):  
Alessio Ilari ◽  
Ester Foppa Pedretti ◽  
Carmine De Francesco ◽  
Daniele Duca

Replacing fossil energy sources with renewable energy sources is a key strategic action to limit environmental issues. To achieve this goal, substitution with biomass is beneficial due to its versatility in various fields. In terms of circular economy and sustainability, the possibility of energy exploitation of residual biomass is particularly desirable in small-medium enterprises. The use of supply chain by-products can improve sustainability and create opportunities for companies. The purpose of this study is to evaluate the suitability of residual biomass of conifers and broad-leaved trees to produce quality pellets using an agri-pellet machine activated by the power take-off of a tractor. This system can be employed at the farm level. Wood biomass of four species was tested; poplar, stone pine, black locust, and oak. Wood chips samples were analyzed to determine their qualitative characteristics following the technical standard ISO 17225-4. Based on the results, different wood blends were created to produce pellets, subsequently characterized according to ISO 17225-2. The analyses carried out on wood chips and pellets were bulk density, moisture, ash content, calorific value, elemental composition, chlorine, sulfur, and heavy metals. In addition, particles size was measured only for wood chips, while the length, diameter, mechanical durability, and ash melting behaviors were determined only for pellets. Some of the analyzed mixtures show acceptable values according to the current ISO technical standards. The values related to the apparent pellet bulk density and the durability test highlight that not all the mixtures are suitable to produce quality pellets. Results also represent a good starting point for future studies.

Author(s):  
O. M. Salamov ◽  
F. F. Aliyev

The paper discusses the possibility of obtaining liquid and gaseous fuels from different types of biomass (BM) and combustible solid waste (CSW) of various origins. The available world reserves of traditional types of fuel are analyzed and a number of environmental shortcomings that created during their use are indicated. The tables present the data on the conditional calorific value (CCV) of the main traditional and alternative types of solid, liquid and gaseous fuels which compared with CCV of various types of BM and CSW. Possible methods for utilization of BM and CSW are analyzed, as well as the methods for converting them into alternative types of fuel, especially into combustible gases.Reliable information is given on the available oil and gas reserves in Azerbaijan. As a result of the research, it was revealed that the currently available oil reserves of Azerbaijan can completely dry out after 33.5 years, and gas reserves–after 117 years, without taking into account the growth rates of the exported part of these fuels to European countries. In order to fix this situation, first of all it is necessary to use as much as possible alternative and renewable energy sources, especially wind power plants (WPP) and solar photovoltaic energy sources (SFES) in the energy sector of the republic. Azerbaijan has large reserves of solar and wind energy. In addition, all regions of the country have large reserves of BM, and in the big cities, especially in industrial ones, there are CSW from which through pyrolysis and gasification is possible to obtain a high-quality combustible gas mixture, comprising: H2 + CO + CH4, with the least amount of harmful waste. The remains of the reaction of thermochemical decomposition of BM and CSW to combustible gases can also be used as mineral fertilizers in agriculture. The available and projected resources of Azerbaijan for the BM and the CSW are given, as well as their assumed energy intensity in the energy sector of the republic.Given the high energy intensity of the pyrolysis and gasification of the BM and CSW, at the present time for carrying out these reactions, the high-temperature solar installations with limited power are used as energy sources, and further preference is given to the use of WPP and SFES on industrial scale.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7525
Author(s):  
Mariusz Niekurzak

The aim of the manuscript was to present the collective results of research on the profitability of using various renewable sources in Poland with the greatest development potential. In the paper, the economic parameters of various investment projects were determined and calculated, i.e., Net Capital Value (NPV), Internal Rate of Return (IRR) and the Period of Return on Invested Capital (PBT). The economic assessment of the use of RES technologies was supplemented with the assessment of environmental benefits. The ecological criterion adopted in the study was the assessment of the potential and costs of reducing greenhouse gas emissions as a result of replacing fossil fuels with renewable energy technologies. On the basis of the constructed economic model to assess the profitability of investments, it has been shown that the analyzed projects will start to bring, depending on their type and technical specification, measurable economic benefits in the form of a reduction in the amount of energy purchased on an annual basis and environmental benefits in the form of reduction of carbon dioxide emissions to the atmosphere. Moreover, the calculations show a high potential for the use of certain renewable sources in Poland, which contributes to the fulfillment of energy and emission obligations towards the EU. The analyzes and research of the Polish energy market with the use of the presented models have shown that the project is fully economically justified and will allow investors to make a rational decision on the appropriate selection of a specific renewable energy source for their investment. The presented economic models to assess the profitability of investments in renewable energy sources can be successfully used in other countries and can also be a starting point for a discussion about the direction of energy development. Due to the lack of collective, original and up-to-date research on the domestic market, the manuscript provides the reader with the necessary knowledge regarding the legitimacy of using renewable energy sources, investment and environmental profitability.


2016 ◽  
Vol 78 (9-2) ◽  
Author(s):  
Hasan Mohd Faizal ◽  
M. Shafiq M. Nazri ◽  
Md. Mizanur Rahman ◽  
S. Syahrullail ◽  
Z. A. Latiff

High global energy demand scenario has driven towards transformation from sole dependence on fossil fuels to utilization of inexhaustible renewable energy sources such as hydro, biomass, solar and wind. Renewable energy sources are abundant in Malaysia, especially palm biomass residues that are produced during the oil extraction process of fresh fruit bunch. Therefore, it is inevitable to harness these bioenergy sources, in order to prevent waste accumulation at adjacent to palm mills. Briquetting of palm biomass such as empty fruit bunch (EFB) with polyethylene (PE) plastics waste addition is expected not only could maximize the utilization of energy resources, but also could become as a potential solution for residue and municipal plastics waste disposal. In the present study, the physical and combustion properties of palm biomass briquettes that contain novel mixture of pulverized EFB and PE plastics waste were investigated experimentally. The briquettes were produced with different mixing ratio of EFB and PE plastics (weight ratios of 95:5, 90:10 and 85:15), under various heating temperatures (130-190 ) and at constant compaction pressure of 7 MPa. Based on the results, it can be said that heating temperature plays a significant role in affecting physical properties such as relaxed density and compressive strength. The values of relaxed density and compressive strength are within the range of 1100 to 1300 kg/m3 and 0.8 to 1.2 MPa, respectively. Meanwhile, mixing ratio does affect relaxed density and gross calorific value. All values of gross calorific (17900 to 21000 kJ/kg) and moisture content (7% to 9%) are found to fulfill the requirement for commercialization as stated by DIN51731 (gross calorific value>17500 kJ/kg and moisture content<10%). Even though the values of ash content (3% to 4%) exceed the limitation as stated by the standard (<0.7%), it is still considered very competitive if compared to the commonly used local briquette that contains mesocarp fibre and shell (5.8%). Finally, it can be concluded that the best quality of briquette can be achieved when highest composition of PE plastics (weight percentage of 15%) is used and the briquetting process is performed at the highest temperature (190 ).  


2019 ◽  
Vol 32 ◽  
pp. 385-389 ◽  
Author(s):  
Pavel Atănăsoae ◽  
Radu Dumitru Pentiuc ◽  
Dan Laurențiu Milici ◽  
Elena Daniela Olariu ◽  
Mihaela Poienar

2017 ◽  
Vol 2 (2) ◽  
pp. 239-245 ◽  
Author(s):  
Zhihua Chen ◽  
Shucheng Chen ◽  
Samira Siahrostami ◽  
Pongkarn Chakthranont ◽  
Christopher Hahn ◽  
...  

Small-scale reactors for H2O2 production that can couple to renewable energy sources would be of great benefit for decentralized water purification.


2018 ◽  
Vol 10 (12) ◽  
pp. 4452 ◽  
Author(s):  
Edyta Ropuszyńska-Surma ◽  
Magdalena Węglarz

This paper investigates the profile of end user of renewable energy sources (RES) among Polish households. Users differ in their sex, age, economic status, knowledge about energy, their attitudes toward RES and pro-ecological behavior therefore our focus was on exploring segmentation criteria. The main determinants of willingness to install small-scale RES among households were assumed as segmentation criteria. The research identified the correlation between the households’ willingness to install RES and (1) socio-economic and energy awareness variables, (2) pro-ecological and pro-effectiveness behaviors variables. The main determinants of RES adoption were explored using empirical analysis with data collected by the survey among 960 households in Lower Silesia, a southwest region in Poland in November and December of 2015. The importance of the variables was verified by a logit model. The discovery of the user profile is vital to obtain knowledge about users of small-scale generators to provide them personalized offer. The finding from this study could be valuable for local authority’s energy utilities that are involved for increasing the adoption rate of RES among households and for (e.g., services companies installing RES) that are interested in increasing number of RES installations.


Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 176 ◽  
Author(s):  
Sarvar Hussain Nengroo ◽  
Muhammad Umair Ali ◽  
Amad Zafar ◽  
Sadam Hussain ◽  
Tahir Murtaza ◽  
...  

The growing human population and the increasing energy needs have produced a serious energy crisis, which has stimulated researchers to look for alternative energy sources. The diffusion of small-scale renewable distributed generations (DG) with micro-grids can be a promising solution to meet the environmental obligations. The uncertainty and sporadic nature of renewable energy sources (RES) is the main obstacle to their use as autonomous energy sources. In order to overcome this, a storage system is required. This paper proposes an optimized strategy for a hybrid photovoltaic (PV) and battery storage system (BSS) connected to a low-voltage grid. In this study, a cost function is formulated to minimize the net cost of electricity purchased from the grid. The charging and discharging of the battery are operated optimally to minimize the defined cost function. Half-hourly electricity consumer load data and solar irradiance data collected from the United Kingdom (UK) for a whole year are utilized in the proposed methodology. Five cases are discussed for a comparative cost analysis of the electricity imported and exported. The proposed scheme provides a techno-economic analysis of the combination of a BSS with a low-voltage grid, benefitting from the feed-in tariff (FIT) scheme.


Author(s):  
Troy V. Nguyen ◽  
Aldo Fabregas Ariza ◽  
Nicholas W. Miller ◽  
Ismael Cremer

Airports are key components of the global transportation system and are the subject of continuous sustainability improvements. Promoting clean energy sources and energy-efficient practices can help attain major sustainability goals at airports around the world. Although small airports are greater in number, most of the “sustainability” attention has been given to large airports. Small airports are typically located in rural areas, making them excellent candidates for renewable energy. This paper focuses on the planning and selection of renewable energy systems as a strategic method to reduce energy use and increase electric power reliability at small-scale airport facilities. The target system may use a combination of renewable energy sources to produce electrical power for the on-site facilities. The framework details include methods of energy collection, power production, and energy storage that are environmentally sound. A small airport serving a dual role as a flight training facility was used as case study. In the case study, systems engineering methodology was adapted to the small airport/ renewable energy domain in order to effectively identify stakeholders and elicit user requirements. These, coupled with industrial standards, relevant government regulations, and a priori constraints, are used to derive the initial requirements that serve as the basis for a preliminary design. The proposed framework also contains provisions for an on-site assessment of existing airport energy needs, sources, providers, and location-specific assets and challenges.


Sign in / Sign up

Export Citation Format

Share Document