scholarly journals Comparison of TMPA-3B42RT Legacy Product and the Equivalent IMERG Products over Mainland China

2018 ◽  
Vol 10 (11) ◽  
pp. 1778 ◽  
Author(s):  
Lei Wu ◽  
Youpeng Xu ◽  
Siyuan Wang

The near-real-time legacy product of Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis (3B42RT) and the equivalent products of Integrated Multi-satellite Retrievals for Global Precipitation Measurement mission (IMERG-E and IMERG-L) were evaluated and compared over Mainland China from 1 January 2015 to 31 December 2016 at the daily timescale, against rain gauge measurements. Results show that: (1) Both 3B42RT and IMERG products overestimate light rain (0.1–9.9 mm/day), while underestimate moderate rain (10.0–24.9 mm/day) to heavy rainstorm (≥250.0 mm/day), with an increase in mean (absolute) error and a decrease in relative mean absolute error (RMAE). The IMERG products perform better in estimating light rain to heavy rain (25.0–49.9 mm/day), and heavy rainstorm, while 3B42RT has smaller error magnitude in estimating light rainstorm (50.0–99.9 mm/day) and moderate rainstorm (100.0–249.9 mm/day). (2) Higher rainfall intensity associates with better detection. Threshold values are <2.0 mm/day, below which 3B42RT is unreliable at detecting rain; and <1.0 mm/day, below which both 3B42RT and IMERG products are more likely to cause false alarms. (3) Generally, both 3B42RT and IMERG products perform better in wet areas with relatively heavy rainfall intensity and/or during wet season than in dry areas with relatively light rainfall intensity and/or during dry season. Compared with 3B42RT, IMERG-E and IMERG-L constantly improve performance in space and time, but it is not obvious in dry areas and/or during dry season. The agreement between IMERG products and rain gauge measurements is low and even negative for different rainfall intensities, and the RMAE is still at a high level (>50%), indicating the IMERG products remain to be improved. This study will shed light on research and application during the transition in multi-satellite rainfall products from TMPA to IMERG and future algorithms improvement.

2020 ◽  
Vol 13 (1) ◽  
pp. 13
Author(s):  
Mohammed T. Mahmoud ◽  
Safa A. Mohammed ◽  
Mohamed A. Hamouda ◽  
Mohamed M. Mohamed

The influence of topographical characteristics and rainfall intensity on the accuracy of satellite precipitation estimates is of importance to the adoption of satellite data for hydrological applications. This study evaluates the three GPM IMERG V05B products over the arid country of Saudi Arabia. Statistical indices quantifying the performance of IMERG products were calculated under three evaluation techniques: seasonal-based, topographical, and rainfall intensity-based. Results indicated that IMERG products have the capability to detect seasons with the highest precipitation values (spring) and seasons with the lowest precipitation (summer). Moreover, results showed that IMERG products performed well under various rainfall intensities, particularly under light rain, which is the most common rainfall in arid regions. Furthermore, IMERG products exhibited high detection accuracy over moderate elevations, whereas it had poor performance over coastal and mountainous regions. Overall, the results confirmed that the performance of the final-run product surpassed the near-real-time products in terms of consistency and errors. IMERG products can improve temporal resolution and play a significant role in filling data gaps in poorly gauged regions. However, due to the errors in IMERG products, it is recommended to use sub-daily rain gauge data in satellite calibration for better rainfall estimation over arid and semiarid regions.


2009 ◽  
Vol 48 (11) ◽  
pp. 2227-2241 ◽  
Author(s):  
Zifeng Yu ◽  
Hui Yu ◽  
Peiyan Chen ◽  
Chuanhai Qian ◽  
Caijun Yue

Abstract To evaluate the abilities of satellite retrievals in reflecting precipitation features related to tropical cyclones (TCs) affecting mainland China, four years of 6- and 24-h precipitation retrievals from three datasets, namely the Tropical Rainfall Measuring Mission satellite algorithm 3B42, version 6 (3B42), Climate Prediction Center morphed (CMORPH) product, and one based on the Geostationary Meteorological Satellite-5 infrared brightness temperature (GMS5-TBB), are compared statistically with direct measurements from surface gauge rainfall data during the periods affected by TCs. The GMS5-TBB dataset was set up by a method of considering the GMS5-TBB characteristics, hourly precipitation intensity, and horizontal distribution for landfalling TCs. The results show that in a general sense, all three satellite-retrieved rainfall datasets give quite reasonable 6- and 24-h rainfall distributions, with skill decreasing with the increase in both latitude and rainfall amount. The 3B42 has a little bit better skill than CMORPH, which is likely related to the fact that the 3B42 product has a rain gauge adjustment and CMORPH does not. Further analyses show that both 3B42 and CMORPH considerably underestimate the moderate and heavy rainfall and overestimate the very light precipitation. The overestimation of the GMS5-TBB data for the light rain is larger than that for 3B42 and CMORPH, probably due to the fact that the GMS5-TBB method considers stratiform and convective rainfall separately with a fixed stratiform rain rate of 2 mm h−1. For the heavy rainfall events, the GMS5-TBB data perform much better than the 3B42 and CMORPH data with an almost halved bias, owing to the fact that the GMS5-TBB method adopted the adjustment of the convective rain rate by considering TBB characteristics of landfalling TCs and using hourly gauge rainfall in the setup process. Since the heavy rainfall events associated with landfalling TCs are of the most concern, the compared GMS5-TBB data could be useful as an operational/research reference.


2018 ◽  
Vol 38 (1) ◽  
pp. 75-84
Author(s):  
Lily Montarcih Limantara ◽  
Donny H. Harisuseno ◽  
Vita A.K. Dewi

AbstractAnalysis of rainfall intensity with specific probability is very important to control the negative impact of rainfall occurrence. Rainfall intensity (I), probability (p) and return period (T) are very important variables for the discharge analysis. There are several methods to estimate rainfall intensity, such as Talbot, Sherman, and Ishiguro. The aim of this research is to develop equation model which can predict rainfall intensity with specific duration and probability. The equation model is compared with the other methods. The result of rainfall intensity model with the value of correlation >0.94 and Nash–Sutcliffe coefficient >99 is quite good enough if compared with the observation result. For specific return period, the modelling result is less accurate which is most likely caused by election of duration. Advanced research in other location indicates that short duration gives the better result for rainfall intensity modelling, which is shown by the decreasing average value of mean absolute error (MAE) from 12.963 to 8.26.


2021 ◽  
Vol 12 (1) ◽  
pp. 51-56
Author(s):  
Md Atiqul Islam ◽  
Asif Ahmed ◽  
Md Munirujjaman Munir ◽  
Zarif Zaman Khandakar

We investigated the preformance of Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation (APHRODITE) of water resources precipitation products in Bangladesh taking rain gauge data as reference for a 3-year period (2003-2005). Various statistical and categorical indices such as coefficient of correlation (CC), bias, relative bias (RB), mean absolute error (MAE), root mean square error (RMSE), probability of detection (POD), and false alarm ratio (FAR), were applied to measure the performance of the product. With CC value of 0.85, bias of 0.91, RB of -9.5%, MAE of 7.7 mm, and RMSE of 15.2 mm the product tended to underestimate rainfall values during the study period. Although, the POD score of 1.00 demonstrated very good skill in detecting the occurrence of rainfall events, FAR value of 0.25 indicated a considerable amount of false alarms. Moreover, as the precipitation threshold increased, the underestimation became more prominent over the study region. Analysis on the basis of location of the rain gauges also showed that APHRODITE consistently underestimated rainfall values with the increase of extreme rainfall thresholds. Journal of Engineering Science 12(1), 2021, 51-56


2020 ◽  
Author(s):  
Safa A. Mohammed ◽  
Mohamed A. Hamouda ◽  
Mohammed T. Mahmoud ◽  
Mohamed M. Mohamed

Abstract. The influence of topographical features and rainfall intensity on the accuracy of precipitation values estimated by earth observing satellites has attracted attention in the past decade. Assessment of rainfall products delivered by the Integrated Multi-satellitE Retrievals of Global precipitation measurement (IMERG) against ground observations has risen as an important endeavour since the accuracy of these products remain unreliable. This study comprehensively evaluated the three GPM IMERG products (near and post-real-time), over the period March 2014 to June 2018. The evaluation approaches were carried out for different seasons, rainfall intensities, topographical features, and hydrological regions over an extremely arid and semiarid country of Saudi Arabia. In general, the results confirmed that the performance of the final-run product surpassed the near-real-time products in terms of consistency and estimated errors. The evaluation results showed that for seasonal-based evaluation, the precipitation products exhibited better performance in spring and summer, while having relatively lower accuracy and higher biases in fall and winter. In addition, the results showed that the IMERG products had high performance in capturing the various rainfall intensities, with light rain having the highest accuracy. This is particularly important for arid regions as most of the rainfall is of the low-intensity class. Overall, the higher the rainfall intensity, the higher the detection errors in the IMERG products. Moreover, the hydrological evaluation results showed that the hydrological regions with low density of rain gauge stations hinders the proper evaluation of satellite products and tends to underestimate the performance of the products. Furthermore, the accuracy of the precipitation products was affected by topography to different extents. IMERG precipitation products exhibited high detection accuracy over moderate elevation areas (inland regions); whereas it had poor performance over flat plains (coastal regions) and high altitudes (foothills and mountainous regions). The outcomes of this evaluation could help developers in improving the GPM IMERG calibration to achieve better detection accuracy over arid and semiarid regions. More importantly, these results are of interest for local authorities to help manage development activities and to plan precautionary measures for extreme rainfall events.


2018 ◽  
Vol 19 (2) ◽  
pp. 339-349 ◽  
Author(s):  
Fuqiang Tian ◽  
Shiyu Hou ◽  
Long Yang ◽  
Hongchang Hu ◽  
Aizhong Hou

Abstract This study investigates the dependency of the evaluation of the Integrated Multisatellite Retrievals for Global Precipitation Measurement (IMERG) rainfall product on the gauge density of a ground-based rain gauge network as well as rainfall intensity over five subregions in mainland China. High-density rain gauges (1.5 gauges per 100 km2) provide exceptional resources for ground validation of satellite rainfall estimates over this region. Eight different gauge networks were derived with contrasting gauge densities ranging from 0.04 to 4 gauges per 100 km2. The evaluation focuses on two warm seasons (April–October) during 2014 and 2015. The results show a strong dependency of the evaluation metrics for the IMERG rainfall product on gauge density and rainfall intensity. A dense rain gauge network tends to provide better evaluation metrics, which implies that previous evaluations of the IMERG rainfall product based on a relatively low-density gauge network might have underestimated its performance. The decreasing trends of probability of detection with gauge density indicate a limited ability to capture light rainfall events in the IMERG rainfall product. However, IMERG tends to overestimate (underestimate) light (heavy) rainfall events, which is a consistent feature that does not show strong dependency on gauge densities. The results provide valuable insights for the improvement of a rainfall retrieval algorithm adopted in the IMERG rainfall product.


Author(s):  
Abdullah Ali ◽  
Gumilang Deranadyan ◽  
Iddam Hairuly Umam

Quantitative Precipitation Estimation (QPE) is quite important information for the hydrology fields and has many advantages for many purposes. Its dense spatial and temporal resolution can be combined with the surface observation to enhance the accuracy of the estimation. This paper presents an enhancement to the QPE product from BMKG weather radar network at Surabaya by adjusting the estimation value form radar to the real data observation from rain gauge. A total of 58 rain gauge is used. The Mean Field Bias (MFB) method used to determine the correction factor through the difference between radar estimation and rain gauge observation value. The correction factor obtained at each gauge points are interpolated to the entire radar grid in a multiplicative adjustment. Radar-gauge merging results a significant improvement revealed by the decreasing of mean absolute error (MAE) about 40% and false alarm ratio (FAR) as well an increasing of possibility of detection (POD) more than 50% at any rain categories (light rain, moderate rain, heavy rain, and very heavy rain). This performance improvement is very beneficial for operational used in BMKG and other hydrological needs.


Author(s):  
Chris C. Funk ◽  
Pete Peterson ◽  
George J. Huffman ◽  
Martin Francis Landsfeld ◽  
Christa Peters-Lidard ◽  
...  

AbstractAs human exposure to hydro-climatic extremes and the number of in situ precipitation observations declines, precipitation estimates, such as the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) mission (IMERG), provide a critical source of information. Here, we present a new gauge-enhanced data set (CHIMES) designed to support global crop and hydrologic modeling and monitoring. CHIMES enhances the IMERG Late Run product using an updated Climate Hazards Center’s (CHC) high-resolution climatology (CHPclim) and low-latency rain-gauge observations. CHPclim differs from other products because it incorporates long-term averages of satellite precipitation, which increases CHPclim’s fidelity in data-sparse areas with complex terrain. This fidelity translates into performance increases in unbiased IMERGlate data, which we refer to as CHIME. This is augmented with gauge observations to produce CHIMES.The CHC’s curated rain-gauge archive contains valuable contributions from many countries. There are two versions of CHIMES: preliminary and final. The final product has more copious and better-curated station data. Every pentad and month, bias-adjusted IMERG late fields are combined with gauge observations to create pentadal and monthly CHIMESprelim and CHIMESfinal. Comparisons with pentadal, high-quality gridded station data show that IMERG late performs well (r=0.75), but has some systematic biases which can be reduced. Monthly cross-validation results indicate that unbiasing increases the variance explained from 50 to 63 percent and decreases the mean absolute error from 48 to 39 mm month−1. Gauge enhancement then increases the variance explained to 75 percent, reducing the mean absolute error to 27 mm month−1.


2020 ◽  
Vol 15 ◽  
Author(s):  
Fahad Layth Malallah ◽  
Baraa T. Shareef ◽  
Mustafah Ghanem Saeed ◽  
Khaled N. Yasen

Aims: Normally, the temperature increase of individuals leads to the possibility of getting a type of disease, which might be risky to other people such as coronavirus. Traditional techniques for tracking core-temperature require body contact either by oral, rectum, axillary, or tympanic, which are unfortunately considered intrusive in nature as well as causes of contagion. Therefore, sensing human core-temperature non-intrusively and remotely is the objective of this research. Background: Nowadays, increasing level of medical sectors is a necessary targets for the research operations, especially with the development of the integrated circuit, sensors and cameras that made the normal life easier. Methods: The solution is by proposing an embedded system consisting of the Arduino microcontroller, which is trained with a model of Mean Absolute Error (MAE) analysis for predicting Contactless Core-Temperature (CCT), which is the real body temperature. Results: The Arduino is connected to an Infrared-Thermal sensor named MLX90614 as input signal, and connected to the LCD to display the CCT. To evaluate the proposed system, experiments are conducted by participating 31-subject sensing contactless temperature from the three face sub-regions: forehead, nose, and cheek. Conclusion: Experimental results approved that CCT can be measured remotely depending on the human face, in which the forehead region is better to be dependent, rather than nose and cheek regions for CCT measurement due to the smallest


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2670
Author(s):  
Thomas Quirin ◽  
Corentin Féry ◽  
Dorian Vogel ◽  
Céline Vergne ◽  
Mathieu Sarracanie ◽  
...  

This paper presents a tracking system using magnetometers, possibly integrable in a deep brain stimulation (DBS) electrode. DBS is a treatment for movement disorders where the position of the implant is of prime importance. Positioning challenges during the surgery could be addressed thanks to a magnetic tracking. The system proposed in this paper, complementary to existing procedures, has been designed to bridge preoperative clinical imaging with DBS surgery, allowing the surgeon to increase his/her control on the implantation trajectory. Here the magnetic source required for tracking consists of three coils, and is experimentally mapped. This mapping has been performed with an in-house three-dimensional magnetic camera. The system demonstrates how magnetometers integrated directly at the tip of a DBS electrode, might improve treatment by monitoring the position during and after the surgery. The three-dimensional operation without line of sight has been demonstrated using a reference obtained with magnetic resonance imaging (MRI) of a simplified brain model. We observed experimentally a mean absolute error of 1.35 mm and an Euclidean error of 3.07 mm. Several areas of improvement to target errors below 1 mm are also discussed.


Sign in / Sign up

Export Citation Format

Share Document