scholarly journals Automatic Detection of Open and Vegetated Water Bodies Using Sentinel 1 to Map African Malaria Vector Mosquito Breeding Habitats

2019 ◽  
Vol 11 (5) ◽  
pp. 593 ◽  
Author(s):  
Andy Hardy ◽  
Georgina Ettritch ◽  
Dónall Cross ◽  
Pete Bunting ◽  
Francis Liywalii ◽  
...  

Providing timely and accurate maps of surface water is valuable for mapping malaria risk and targeting disease control interventions. Radar satellite remote sensing has the potential to provide this information but current approaches are not suitable for mapping African malarial mosquito aquatic habitats that tend to be highly dynamic, often with emergent vegetation. We present a novel approach for mapping both open and vegetated water bodies using serial Sentinel-1 imagery for Western Zambia. This region is dominated by the seasonally inundated Upper Zambezi floodplain that suffers from a number of public health challenges. The approach uses open source segmentation and machine learning (extra trees classifier), applied to training data that are automatically derived using freely available ancillary data. Refinement is implemented through a consensus approach and Otsu thresholding to eliminate false positives due to dry flat sandy areas. The results indicate a high degree of accuracy (mean overall accuracy 92% st dev 3.6) providing a tractable solution for operationally mapping water bodies in similar large river floodplain unforested environments. For the period studied, 70% of the total water extent mapped was attributed to vegetated water, highlighting the importance of mapping both open and vegetated water bodies for surface water mapping.

2021 ◽  
Vol 13 (12) ◽  
pp. 2368
Author(s):  
Lawrence V. Stanislawski ◽  
Ethan J. Shavers ◽  
Shaowen Wang ◽  
Zhe Jiang ◽  
E. Lynn Usery ◽  
...  

Accurate maps of regional surface water features are integral for advancing ecologic, atmospheric and land development studies. The only comprehensive surface water feature map of Alaska is the National Hydrography Dataset (NHD). NHD features are often digitized representations of historic topographic map blue lines and may be outdated. Here we test deep learning methods to automatically extract surface water features from airborne interferometric synthetic aperture radar (IfSAR) data to update and validate Alaska hydrographic databases. U-net artificial neural networks (ANN) and high-performance computing (HPC) are used for supervised hydrographic feature extraction within a study area comprised of 50 contiguous watersheds in Alaska. Surface water features derived from elevation through automated flow-routing and manual editing are used as training data. Model extensibility is tested with a series of 16 U-net models trained with increasing percentages of the study area, from about 3 to 35 percent. Hydrography is predicted by each of the models for all watersheds not used in training. Input raster layers are derived from digital terrain models, digital surface models, and intensity images from the IfSAR data. Results indicate about 15 percent of the study area is required to optimally train the ANN to extract hydrography when F1-scores for tested watersheds average between 66 and 68. Little benefit is gained by training beyond 15 percent of the study area. Fully connected hydrographic networks are generated for the U-net predictions using a novel approach that constrains a D-8 flow-routing approach to follow U-net predictions. This work demonstrates the ability of deep learning to derive surface water feature maps from complex terrain over a broad area.


Author(s):  
Z.B. Baktybaeva ◽  
R.A. Suleymanov ◽  
T.K. Valeev ◽  
N.R. Rakhmatullin

Carried out ecological and hygienic assessment of pollution of surface and groundwater of mining areas in the Republic of Bashkortostan. Revealed exceeding standards for fishery water bodies and drinking and cultural and community water use, which indicates the potential danger of surface water for the health of the region's population. The greatest relative contribution to the overall pollution of surface water bodies are making manganese (33,0–66,6 %), iron (9,1–15,6 %), calcium (6,5–11,7 %), lead (5,8– 7,2 %). The quality of water used for drinking purposes from decentralized water sources (boreholes, wells, springs), do not always correspond to the hygienic and sanitary-epidemiological requirements. In this case, the highest priority performance of drinking water contamination are increased stiffness, high content of iron, calcium, nitrate, presence cadmium, and hexavalent chromium.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1109
Author(s):  
Nobuaki Kimura ◽  
Kei Ishida ◽  
Daichi Baba

Long-term climate change may strongly affect the aquatic environment in mid-latitude water resources. In particular, it can be demonstrated that temporal variations in surface water temperature in a reservoir have strong responses to air temperature. We adopted deep neural networks (DNNs) to understand the long-term relationships between air temperature and surface water temperature, because DNNs can easily deal with nonlinear data, including uncertainties, that are obtained in complicated climate and aquatic systems. In general, DNNs cannot appropriately predict unexperienced data (i.e., out-of-range training data), such as future water temperature. To improve this limitation, our idea is to introduce a transfer learning (TL) approach. The observed data were used to train a DNN-based model. Continuous data (i.e., air temperature) ranging over 150 years to pre-training to climate change, which were obtained from climate models and include a downscaling model, were used to predict past and future surface water temperatures in the reservoir. The results showed that the DNN-based model with the TL approach was able to approximately predict based on the difference between past and future air temperatures. The model suggested that the occurrences in the highest water temperature increased, and the occurrences in the lowest water temperature decreased in the future predictions.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3673
Author(s):  
Stefan Grushko ◽  
Aleš Vysocký ◽  
Petr Oščádal ◽  
Michal Vocetka ◽  
Petr Novák ◽  
...  

In a collaborative scenario, the communication between humans and robots is a fundamental aspect to achieve good efficiency and ergonomics in the task execution. A lot of research has been made related to enabling a robot system to understand and predict human behaviour, allowing the robot to adapt its motion to avoid collisions with human workers. Assuming the production task has a high degree of variability, the robot’s movements can be difficult to predict, leading to a feeling of anxiety in the worker when the robot changes its trajectory and approaches since the worker has no information about the planned movement of the robot. Additionally, without information about the robot’s movement, the human worker cannot effectively plan own activity without forcing the robot to constantly replan its movement. We propose a novel approach to communicating the robot’s intentions to a human worker. The improvement to the collaboration is presented by introducing haptic feedback devices, whose task is to notify the human worker about the currently planned robot’s trajectory and changes in its status. In order to verify the effectiveness of the developed human-machine interface in the conditions of a shared collaborative workspace, a user study was designed and conducted among 16 participants, whose objective was to accurately recognise the goal position of the robot during its movement. Data collected during the experiment included both objective and subjective parameters. Statistically significant results of the experiment indicated that all the participants could improve their task completion time by over 45% and generally were more subjectively satisfied when completing the task with equipped haptic feedback devices. The results also suggest the usefulness of the developed notification system since it improved users’ awareness about the motion plan of the robot.


Axioms ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 36
Author(s):  
Norma P. Rodríguez-Cándido ◽  
Rafael A. Espin-Andrade ◽  
Efrain Solares ◽  
Witold Pedrycz

This work presents a novel approach to prediction of financial asset prices. Its main contribution is the combination of compensatory fuzzy logic and the classical technical analysis to build an efficient prediction model. The interpretability properties of the model allow its users to incorporate and consider virtually any set of rules from technical analysis, in addition to the investors’ knowledge related to the actual market conditions. This knowledge can be incorporated into the model in the form of subjective assessments made by investors. Such assessments can be obtained, for example, from the graphical analysis commonly performed by traders. The effectiveness of the model was assessed through its systematic application in the stock and cryptocurrency markets. From the results, we conclude that when the model shows a high degree of recommendation, the actual financial assets show high effectiveness.


Author(s):  
Haitham Baomar ◽  
Peter J. Bentley

AbstractWe describe the Intelligent Autopilot System (IAS), a fully autonomous autopilot capable of piloting large jets such as airliners by learning from experienced human pilots using Artificial Neural Networks. The IAS is capable of autonomously executing the required piloting tasks and handling the different flight phases to fly an aircraft from one airport to another including takeoff, climb, cruise, navigate, descent, approach, and land in simulation. In addition, the IAS is capable of autonomously landing large jets in the presence of extreme weather conditions including severe crosswind, gust, wind shear, and turbulence. The IAS is a potential solution to the limitations and robustness problems of modern autopilots such as the inability to execute complete flights, the inability to handle extreme weather conditions especially during approach and landing where the aircraft’s speed is relatively low, and the uncertainty factor is high, and the pilots shortage problem compared to the increasing aircraft demand. In this paper, we present the work done by collaborating with the aviation industry to provide training data for the IAS to learn from. The training data is used by Artificial Neural Networks to generate control models automatically. The control models imitate the skills of the human pilot when executing all the piloting tasks required to pilot an aircraft between two airports. In addition, we introduce new ANNs trained to control the aircraft’s elevators, elevators’ trim, throttle, flaps, and new ailerons and rudder ANNs to counter the effects of extreme weather conditions and land safely. Experiments show that small datasets containing single demonstrations are sufficient to train the IAS and achieve excellent performance by using clearly separable and traceable neural network modules which eliminate the black-box problem of large Artificial Intelligence methods such as Deep Learning. In addition, experiments show that the IAS can handle landing in extreme weather conditions beyond the capabilities of modern autopilots and even experienced human pilots. The proposed IAS is a novel approach towards achieving full control autonomy of large jets using ANN models that match the skills and abilities of experienced human pilots and beyond.


Sign in / Sign up

Export Citation Format

Share Document