scholarly journals Remote Sensing of Pigment Content at a Leaf Scale: Comparison among Some Specular Removal and Specular Resistance Methods

2019 ◽  
Vol 11 (8) ◽  
pp. 983 ◽  
Author(s):  
Li ◽  
Huang

Leaf pigment content retrieval is negatively affected by specular reflectance. To alleviate this effect, some specific techniques that take specular reflectance or specular effects into account have been proposed. In this study, continuous wavelet transform (CWT) and specific techniques including some vegetation indices (VIs), radiative transfer (RT), and hybrid models, were examined and compared in the nadir and near the mirror-like direction, with a 30° incident zenith angle. Results show that the RT and hybrid models appeared to be ill-posed, and they were not applicable at this high-incident zenith angle (>20°). Most VIs effectively alleviated the specular disturbance in the forward 35° direction, and comparable accuracy was obtained between the two viewing directions. Multiple linear regression (MLR), derivative transformation, and CWT were effective for specular interference alleviation. The MLR-based methods (reflectance, derivatives, etc., as the independent variables and pigment content as the response) generally obtained higher retrieval accuracies than the VIs. With MLR-based methods, the retrieval was more accurate for chlorophylls than for carotenoids. CWT plus MLR (MLR on wavelet coefficients) was the most prominent among all the methods, and it generally obtained the highest accuracy. The results are 2.68 and 0.88 μg/cm² for chlorophylls and carotenoids, respectively, in the nadir direction, and 2.42 and 0.86 μg/cm² in the forward 35° direction, with reflectance or the first derivative input for CWT. In the retrieval, wavelet coefficients at the optimal decomposition scale may achieve a balance in corresponding to fine, and broad absorption features, and the overall reflectance properties.

Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 914
Author(s):  
Adeel Ahmad ◽  
Hammad Gilani ◽  
Sajid Rashid Ahmad

This paper provides a comprehensive literature review on forest aboveground biomass (AGB) estimation and mapping through high-resolution optical satellite imagery (≤5 m spatial resolution). Based on the literature review, 44 peer-reviewed journal articles were published in 15 years (2004–2019). Twenty-one studies were conducted across six continents in Asia, eight in North America and Africa, five in South America, and four in Europe. This review article gives a glance at the published methodologies for AGB prediction modeling and validation. The literature review suggested that, along with the integration of other sensors, QuickBird, WorldView-2, and IKONOS satellite images were most widely used for AGB estimations, with higher estimation accuracies. All studies were grouped into six satellite-derived independent variables, including tree crown, image textures, tree shadow fraction, canopy height, vegetation indices, and multiple variables. Using these satellite-derived independent variables, most of the studies used linear regression (41%), while 30% used linear (multiple regression and 18% used non-linear (machine learning) regression, while very few (11%) studies used non-linear (multiple and exponential) regression for estimating AGB. In the context of global forest AGB estimations and monitoring, the advantages, strengths, and limitations were discussed to achieve better accuracy and transparency towards the performance-based payment mechanism of the REDD+ program. Apart from technical limitations, we realized that very few studies talked about real-time monitoring of AGB or quantifying AGB change, a dimension that needs exploration.


2010 ◽  
Vol 13 (1) ◽  
pp. 49-63 ◽  
Author(s):  
Niranjan Pramanik ◽  
Rabindra K. Panda ◽  
Adarsh Singh

Advance time step stream flow forecasting is of paramount importance in controlling flood damage. During the past few decades, artificial neural network (ANN) techniques have been used extensively in stream flow forecasting and have proven to be a better technique than other forecasting methods such as multiple regression and general transfer function models. This study uses discrete wavelet transformation functions to preprocess the time series of the flow data into wavelet coefficients of different frequency bands. Effective wavelet coefficients are selected from the correlation analysis of the decomposed wavelet coefficients of all frequency bands with the observed flow data. Neural network models are proposed for 1-, 2- and 3-day flow forecasting at a site of Brahmani River, India. The effective wavelet coefficients are used as input to the neural network models. Both the wavelet and ANN techniques are employed to form a loose type of wavelet ANN hybrid model (NW). The hybrid models are trained using Levenberg–Marquart (LM) algorithm and the results are compared with simple ANN models. The results revealed that the predictabilities of NW models are significantly superior to conventional ANN models. The peak flow conditions are predicted with better accuracy using NW models than compared to ANN models.


2019 ◽  
Vol 11 (18) ◽  
pp. 2119 ◽  
Author(s):  
Naoyuki Hashimoto ◽  
Yuki Saito ◽  
Masayasu Maki ◽  
Koki Homma

Reflectance and vegetation indices obtained from aerial images are often used for monitoring crop fields. In recent years, unmanned aerial vehicles (UAVs) have become popular and aerial images have been collected under various solar radiation conditions. The value of observed reflectance and vegetation indices are considered to be affected by solar radiation conditions, which may lead to inaccurate estimations of crop growth. In this study, in order to evaluate the effect of solar radiation conditions on aerial images, canopy reflectance in paddy fields was simulated by a radiative transfer model, FLiES (Forest Light Environmental Simulator), for various solar radiation conditions and canopy structures. Several parameters including solar zenith angle, proportion of diffuse light for incident sunlight, plant height, coordinates of plants and leaf area density, were tested in FLiES. The simulation results showed that the solar zenith angle did not vary the canopy reflectance under the conditions of the proportion of diffuse light at 1.0, but the variation was greater at lower proportions of diffuse light. The difference in reflectance caused by solar radiation was 0.01 and 0.1 at the maximum for red and near-infrared bands, respectively. The simulation results also showed that the differences in reflectance affect vegetation indices (Simple Ratio (SR), Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index 2 (EVI2)). The variation caused by solar radiation conditions was the least for NDVI and the greatest for SR. However, NDVI was saturated at the least leaf area index (LAI), whereas SR was only slightly saturated. EVI2 was intermediate between SR and NDVI, both in terms of variation and saturation. The simulated reflectance and vegetation indices were similar to those obtained from the aerial images collected in the farmers’ paddy fields. These results suggest that a large proportion of diffuse light (close to 1.0) or a middle range of solar zenith angle (45 to 65 degrees) may be desirable for UAV monitoring. However, to maintain flexibility of time and occasion for UAV monitoring, EVI2 should be used to evaluate crop growth, although calibration based on solar radiation conditions is recommended.


2019 ◽  
Vol 11 (14) ◽  
pp. 1650 ◽  
Author(s):  
Caio Arlanche Petri ◽  
Lênio Soares Galvão

We used Moderate Resolution Imaging Spectroradiometer (MODIS) data, processed by the multi–angle implementation of atmospheric correction (MAIAC) algorithm, to investigate the sensitivity of seven vegetation indices (VIs) to bidirectional reflectance distribution function (BRDF) effects in the dry season (June–September) of the Brazilian Amazon. The analysis was first performed over three sites, located from north to south of the Amazon, and then extended into the entire region. We inspected for differences in viewing–illumination parameters and pixel quality retrievals during MODIS data acquisition over the region. By comparing and correlating corrected and non–corrected data for bidirectional effects, we evaluated monthly changes in reflectance and VIs (2000–2014). Finally, we computed the effect size of the BRDF correction using non–parametric Mann–Whitney tests and Cohen’s r metrics. The results showed that the most anisotropic VIs were the enhanced vegetation index (EVI), photochemical reflectance index (PRI), and shortwave infrared normalized difference (SWND). These VIs presented the largest relative changes and the lowest correlation coefficients, between corrected and non–corrected data, because of the large effect size of the BRDF. The least anisotropic VI was the normalized difference water index (NDWI). The anisotropy of these VIs was stronger in the northern Amazon. It increased from the beginning to the end of the dry season, following changes in the relative azimuth angle (RAA) toward the BRDF hotspot in September. The modifications in the relative proportions of backscattering observations used in composite products caused a reflectance increase in all MODIS bands at the end of the dry season, especially in the near infrared (NIR). The reflectance decreased after BRDF correction. Because of the atmospheric effects, the view zenith angle (VZA) of the pixels selected in composite products decreased toward the south of the Amazon. In the southern Amazon, the seasonal amplitude in the solar zenith angle (SZA) reached values close to 18°. For the most anisotropic index, the BRDF correction removed, on average, 30% of the EVI signal in June, and 60% of the EVI signal in September, reducing dry season variations over time. The results reinforce the need for bidirectional correction of MODIS data before the seasonal and inter–annual analyses of the most anisotropic VIs.


Author(s):  
B. Roy Frieden

Despite the skill and determination of electro-optical system designers, the images acquired using their best designs often suffer from blur and noise. The aim of an “image enhancer” such as myself is to improve these poor images, usually by digital means, such that they better resemble the true, “optical object,” input to the system. This problem is notoriously “ill-posed,” i.e. any direct approach at inversion of the image data suffers strongly from the presence of even a small amount of noise in the data. In fact, the fluctuations engendered in neighboring output values tend to be strongly negative-correlated, so that the output spatially oscillates up and down, with large amplitude, about the true object. What can be done about this situation? As we shall see, various concepts taken from statistical communication theory have proven to be of real use in attacking this problem. We offer below a brief summary of these concepts.


Author(s):  
Beta Asteria

This research deals with the impact of Local Tax and Retribution Receipt to Local Government Original Receipt of Regency/City in Central Java from 2008 to 2012. This research utilizes the data of actual of local government budget from Directorate General of Fiscal Balance (Direktorat Jendral Perimbangan Keuangan). Methods of collecting data through census. The number of Regency/City in Central Java are 35. But the data consists of 33 of Regency/City In Central Java from 2008 to 2012. Total of samples are 165. Karanganyar Regency and Sukoharjo Regency were not included as samples of this research because they didn’t report the data of actual of local government budget to Directorate General of Fiscal Balance in 2009.The model used in this research is multiple regressions. The independent variables are Local Tax and Retribution Receipt, the dependent variable is Local Government Original Receipt. The research findings show that Local Tax and Retribution give the significant impact partially and simultaneusly on Local Government Original Receipt at real level 5 percent. All independent variables explain 91,90 percent of the revenue variability while the rest 8,10 percent is explained by other variables.Keywords: Local Tax, Retribution, and Local Government Original Receipt


2017 ◽  
Vol 24 (1) ◽  
pp. 35-53
Author(s):  
Sulastiningsih Sulastiningsih ◽  
Intan Ayu Candra

The purpose of this study is to prove: (1) Time pressure, locus of control, the action of supervision and materiality partially affect the premature termination of the audit procedures (2) Time pressure, locus of control, supervision and materiality simultaneously affect the premature termination on the audit procedures. This research was conducted in Public Accountant firm in Yogyakarta region of which total 12 samples of KAP, by distributing 105 questionnaires, and 57 questionnaires were returned (54%). 34 of the returned questionnaires can be processed (34%). The samples in this study were determined by using non-probability sampling, one of purposive sampling methods. Data analysis consisted of: (1) validity test, reliability test and classical assumption. The result showed that the instruments used are quite reliable and valid (2) multiple linear regression analysis. The results are (a) Some of independent variables partially affect premature termination of the audit procedure, while the action of supervision does not influence premature termination of audit procedures (b) All independent variables influence simultaneously to the premature termination of the audit procedures (c) All independent variables showed that as much as 55% it affects on premature termination of the audit procedures, the rest of it are influenced by other variables. (3) Friedman Test. The result shows that there are order of priority of audit procedures being terminated.


Sign in / Sign up

Export Citation Format

Share Document