scholarly journals Mask OBB: A Semantic Attention-Based Mask Oriented Bounding Box Representation for Multi-Category Object Detection in Aerial Images

2019 ◽  
Vol 11 (24) ◽  
pp. 2930 ◽  
Author(s):  
Jinwang Wang ◽  
Jian Ding ◽  
Haowen Guo ◽  
Wensheng Cheng ◽  
Ting Pan ◽  
...  

Object detection in aerial images is a fundamental yet challenging task in remote sensing field. As most objects in aerial images are in arbitrary orientations, oriented bounding boxes (OBBs) have a great superiority compared with traditional horizontal bounding boxes (HBBs). However, the regression-based OBB detection methods always suffer from ambiguity in the definition of learning targets, which will decrease the detection accuracy. In this paper, we provide a comprehensive analysis of OBB representations and cast the OBB regression as a pixel-level classification problem, which can largely eliminate the ambiguity. The predicted masks are subsequently used to generate OBBs. To handle huge scale changes of objects in aerial images, an Inception Lateral Connection Network (ILCN) is utilized to enhance the Feature Pyramid Network (FPN). Furthermore, a Semantic Attention Network (SAN) is adopted to provide the semantic feature, which can help distinguish the object of interest from the cluttered background effectively. Empirical studies show that the entire method is simple yet efficient. Experimental results on two widely used datasets, i.e., DOTA and HRSC2016, demonstrate that the proposed method outperforms state-of-the-art methods.

Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1686 ◽  
Author(s):  
Feng Yang ◽  
Wentong Li ◽  
Haiwei Hu ◽  
Wanyi Li ◽  
Peng Wang

Accurate and robust detection of multi-class objects in very high resolution (VHR) aerial images has been playing a significant role in many real-world applications. The traditional detection methods have made remarkable progresses with horizontal bounding boxes (HBBs) due to CNNs. However, HBB detection methods still exhibit limitations including the missed detection and the redundant detection regions, especially for densely-distributed and strip-like objects. Besides, large scale variations and diverse background also bring in many challenges. Aiming to address these problems, an effective region-based object detection framework named Multi-scale Feature Integration Attention Rotation Network (MFIAR-Net) is proposed for aerial images with oriented bounding boxes (OBBs), which promotes the integration of the inherent multi-scale pyramid features to generate a discriminative feature map. Meanwhile, the double-path feature attention network supervised by the mask information of ground truth is introduced to guide the network to focus on object regions and suppress the irrelevant noise. To boost the rotation regression and classification performance, we present a robust Rotation Detection Network, which can generate efficient OBB representation. Extensive experiments and comprehensive evaluations on two publicly available datasets demonstrate the effectiveness of the proposed framework.


2020 ◽  
Vol 12 (22) ◽  
pp. 3750
Author(s):  
Wei Guo ◽  
Weihong Li ◽  
Zhenghao Li ◽  
Weiguo Gong ◽  
Jinkai Cui ◽  
...  

Object detection is one of the core technologies in aerial image processing and analysis. Although existing aerial image object detection methods based on deep learning have made some progress, there are still some problems remained: (1) Most existing methods fail to simultaneously consider multi-scale and multi-shape object characteristics in aerial images, which may lead to some missing or false detections; (2) high precision detection generally requires a large and complex network structure, which usually makes it difficult to achieve the high detection efficiency and deploy the network on resource-constrained devices for practical applications. To solve these problems, we propose a slimmer network for more efficient object detection in aerial images. Firstly, we design a polymorphic module (PM) for simultaneously learning the multi-scale and multi-shape object features, so as to better detect the hugely different objects in aerial images. Then, we design a group attention module (GAM) for better utilizing the diversiform concatenation features in the network. By designing multiple detection headers with adaptive anchors and the above-mentioned two modules, we propose a one-stage network called PG-YOLO for realizing the higher detection accuracy. Based on the proposed network, we further propose a more efficient channel pruning method, which can slim the network parameters from 63.7 million (M) to 3.3M that decreases the parameter size by 94.8%, so it can significantly improve the detection efficiency for real-time detection. Finally, we execute the comparative experiments on three public aerial datasets, and the experimental results show that the proposed method outperforms the state-of-the-art methods.


Author(s):  
Zhenying Xu ◽  
Ziqian Wu ◽  
Wei Fan

Defect detection of electromagnetic luminescence (EL) cells is the core step in the production and preparation of solar cell modules to ensure conversion efficiency and long service life of batteries. However, due to the lack of feature extraction capability for small feature defects, the traditional single shot multibox detector (SSD) algorithm performs not well in EL defect detection with high accuracy. Consequently, an improved SSD algorithm with modification in feature fusion in the framework of deep learning is proposed to improve the recognition rate of EL multi-class defects. A dataset containing images with four different types of defects through rotation, denoising, and binarization is established for the EL. The proposed algorithm can greatly improve the detection accuracy of the small-scale defect with the idea of feature pyramid networks. An experimental study on the detection of the EL defects shows the effectiveness of the proposed algorithm. Moreover, a comparison study shows the proposed method outperforms other traditional detection methods, such as the SIFT, Faster R-CNN, and YOLOv3, in detecting the EL defect.


2021 ◽  
Vol 11 (13) ◽  
pp. 6016
Author(s):  
Jinsoo Kim ◽  
Jeongho Cho

For autonomous vehicles, it is critical to be aware of the driving environment to avoid collisions and drive safely. The recent evolution of convolutional neural networks has contributed significantly to accelerating the development of object detection techniques that enable autonomous vehicles to handle rapid changes in various driving environments. However, collisions in an autonomous driving environment can still occur due to undetected obstacles and various perception problems, particularly occlusion. Thus, we propose a robust object detection algorithm for environments in which objects are truncated or occluded by employing RGB image and light detection and ranging (LiDAR) bird’s eye view (BEV) representations. This structure combines independent detection results obtained in parallel through “you only look once” networks using an RGB image and a height map converted from the BEV representations of LiDAR’s point cloud data (PCD). The region proposal of an object is determined via non-maximum suppression, which suppresses the bounding boxes of adjacent regions. A performance evaluation of the proposed scheme was performed using the KITTI vision benchmark suite dataset. The results demonstrate the detection accuracy in the case of integration of PCD BEV representations is superior to when only an RGB camera is used. In addition, robustness is improved by significantly enhancing detection accuracy even when the target objects are partially occluded when viewed from the front, which demonstrates that the proposed algorithm outperforms the conventional RGB-based model.


2021 ◽  
Vol 11 (13) ◽  
pp. 6006
Author(s):  
Huy Le ◽  
Minh Nguyen ◽  
Wei Qi Yan ◽  
Hoa Nguyen

Augmented reality is one of the fastest growing fields, receiving increased funding for the last few years as people realise the potential benefits of rendering virtual information in the real world. Most of today’s augmented reality marker-based applications use local feature detection and tracking techniques. The disadvantage of applying these techniques is that the markers must be modified to match the unique classified algorithms or they suffer from low detection accuracy. Machine learning is an ideal solution to overcome the current drawbacks of image processing in augmented reality applications. However, traditional data annotation requires extensive time and labour, as it is usually done manually. This study incorporates machine learning to detect and track augmented reality marker targets in an application using deep neural networks. We firstly implement the auto-generated dataset tool, which is used for the machine learning dataset preparation. The final iOS prototype application incorporates object detection, object tracking and augmented reality. The machine learning model is trained to recognise the differences between targets using one of YOLO’s most well-known object detection methods. The final product makes use of a valuable toolkit for developing augmented reality applications called ARKit.


2020 ◽  
Vol 12 (5) ◽  
pp. 784 ◽  
Author(s):  
Wei Guo ◽  
Weihong Li ◽  
Weiguo Gong ◽  
Jinkai Cui

Multi-scale object detection is a basic challenge in computer vision. Although many advanced methods based on convolutional neural networks have succeeded in natural images, the progress in aerial images has been relatively slow mainly due to the considerably huge scale variations of objects and many densely distributed small objects. In this paper, considering that the semantic information of the small objects may be weakened or even disappear in the deeper layers of neural network, we propose a new detection framework called Extended Feature Pyramid Network (EFPN) for strengthening the information extraction ability of the neural network. In the EFPN, we first design the multi-branched dilated bottleneck (MBDB) module in the lateral connections to capture much more semantic information. Then, we further devise an attention pathway for better locating the objects. Finally, an augmented bottom-up pathway is conducted for making shallow layer information easier to spread and further improving performance. Moreover, we present an adaptive scale training strategy to enable the network to better recognize multi-scale objects. Meanwhile, we present a novel clustering method to achieve adaptive anchors and make the neural network better learn data features. Experiments on the public aerial datasets indicate that the presented method obtain state-of-the-art performance.


Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1235
Author(s):  
Yang Yang ◽  
Hongmin Deng

In order to make the classification and regression of single-stage detectors more accurate, an object detection algorithm named Global Context You-Only-Look-Once v3 (GC-YOLOv3) is proposed based on the You-Only-Look-Once (YOLO) in this paper. Firstly, a better cascading model with learnable semantic fusion between a feature extraction network and a feature pyramid network is designed to improve detection accuracy using a global context block. Secondly, the information to be retained is screened by combining three different scaling feature maps together. Finally, a global self-attention mechanism is used to highlight the useful information of feature maps while suppressing irrelevant information. Experiments show that our GC-YOLOv3 reaches a maximum of 55.5 object detection mean Average Precision (mAP)@0.5 on Common Objects in Context (COCO) 2017 test-dev and that the mAP is 5.1% higher than that of the YOLOv3 algorithm on Pascal Visual Object Classes (PASCAL VOC) 2007 test set. Therefore, experiments indicate that the proposed GC-YOLOv3 model exhibits optimal performance on the PASCAL VOC and COCO datasets.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3341 ◽  
Author(s):  
Hilal Tayara ◽  
Kil Chong

Object detection in very high-resolution (VHR) aerial images is an essential step for a wide range of applications such as military applications, urban planning, and environmental management. Still, it is a challenging task due to the different scales and appearances of the objects. On the other hand, object detection task in VHR aerial images has improved remarkably in recent years due to the achieved advances in convolution neural networks (CNN). Most of the proposed methods depend on a two-stage approach, namely: a region proposal stage and a classification stage such as Faster R-CNN. Even though two-stage approaches outperform the traditional methods, their optimization is not easy and they are not suitable for real-time applications. In this paper, a uniform one-stage model for object detection in VHR aerial images has been proposed. In order to tackle the challenge of different scales, a densely connected feature pyramid network has been proposed by which high-level multi-scale semantic feature maps with high-quality information are prepared for object detection. This work has been evaluated on two publicly available datasets and outperformed the current state-of-the-art results on both in terms of mean average precision (mAP) and computation time.


2019 ◽  
Vol 11 (18) ◽  
pp. 2176 ◽  
Author(s):  
Chen ◽  
Zhong ◽  
Tan

Detecting objects in aerial images is a challenging task due to multiple orientations and relatively small size of the objects. Although many traditional detection models have demonstrated an acceptable performance by using the imagery pyramid and multiple templates in a sliding-window manner, such techniques are inefficient and costly. Recently, convolutional neural networks (CNNs) have successfully been used for object detection, and they have demonstrated considerably superior performance than that of traditional detection methods; however, this success has not been expanded to aerial images. To overcome such problems, we propose a detection model based on two CNNs. One of the CNNs is designed to propose many object-like regions that are generated from the feature maps of multi scales and hierarchies with the orientation information. Based on such a design, the positioning of small size objects becomes more accurate, and the generated regions with orientation information are more suitable for the objects arranged with arbitrary orientations. Furthermore, another CNN is designed for object recognition; it first extracts the features of each generated region and subsequently makes the final decisions. The results of the extensive experiments performed on the vehicle detection in aerial imagery (VEDAI) and overhead imagery research data set (OIRDS) datasets indicate that the proposed model performs well in terms of not only the detection accuracy but also the detection speed.


2020 ◽  
Vol 12 (9) ◽  
pp. 1435 ◽  
Author(s):  
Chengyuan Li ◽  
Bin Luo ◽  
Hailong Hong ◽  
Xin Su ◽  
Yajun Wang ◽  
...  

Different from object detection in natural image, optical remote sensing object detection is a challenging task, due to the diverse meteorological conditions, complex background, varied orientations, scale variations, etc. In this paper, to address this issue, we propose a novel object detection network (the global-local saliency constraint network, GLS-Net) that can make full use of the global semantic information and achieve more accurate oriented bounding boxes. More precisely, to improve the quality of the region proposals and bounding boxes, we first propose a saliency pyramid which combines a saliency algorithm with a feature pyramid network, to reduce the impact of complex background. Based on the saliency pyramid, we then propose a global attention module branch to enhance the semantic connection between the target and the global scenario. A fast feature fusion strategy is also used to combine the local object information based on the saliency pyramid with the global semantic information optimized by the attention mechanism. Finally, we use an angle-sensitive intersection over union (IoU) method to obtain a more accurate five-parameter representation of the oriented bounding boxes. Experiments with a publicly available object detection dataset for aerial images demonstrate that the proposed GLS-Net achieves a state-of-the-art detection performance.


Sign in / Sign up

Export Citation Format

Share Document